

NSWCCD-50-TR-2009/079

Hydromechanics Department Report Reissue of NSWCCD-50-TR-2002/001 September 2009

Scaling Effects on Stern Flap Performance Progress Report

By Dominic S. Cusanelli

From Laboratory . . .

. . . To Sea

Approved for public release. Distribution Unlimited.

20091027416

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing end reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, Including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for falling to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
September 2009	Final	Progress through 2002
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
Scaling Effects on Stern Flap Peri	formance - Progress Report	
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Dominic S. Cusanelli		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
		01-1-8590-145, 01-1-5060-151
	ME(S) AND ADDRESS(ES) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION REPORT NUMBER
Naval Surface Warfare Ce Carderock Division	nter	NSWCCD-TR-2009/079
9500 Macarthur Boulevard		NSWCCD-1R-2009/079
West Bethesda, MD 20817-5700		
9. SPONSORING / MONITORING AGEN Shipboard Energy R&D Off Code 859, NSWCCD	ice Office of Naval Research ONR 333	10. SPONSOR/MONITOR'S ACRONYM(S)
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)
42 DISTRIBUTION / AVAILABILITY ST	ATEMENT	

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution Unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The installation of a prototype stern flap on the USS RAMAGE (DDG 61), the 11th destroyer of the DDG 51 Class, with associated stern flap evaluation trials, has provided invaluable information towards the continuation of the stern flap scale

Comparison of stern flap trials results on RAMAGE, to that of a geosim model experiment series, was utilized for the refinement of techniques for extrapolation of model test data to full-scale performance. A practical technique, by which fullscale stern flap performance at sea could be projected from model-scale experimental data, is presented. An analysis tool for evaluating stern flap scaling effects, to be utilized with model-scale experimental results, to better project full-scale stern flap performance, was formulated. This formulation has several distinct advantages over its predecessor. Foremost, is the inclusion of the RAMAGE trials data in the updated version. In addition, the stern flap scale effects, as represented in this analysis tool, are dependant on not only the tested model seale ratio and speed range as before, but also on the magnitude of the model-seale performance relative to that of the study ease.

15. SUBJECT TERMS Stern flap scaling effects; DDG 61 stern flap performance trials; geosim model experiments

16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NO. OF PAGES	19a. RESPONSIBLE PERSON Dominic S. Cusanelli
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED	SAR	54	19b. TELEPHONE NUMBER 301-227-7008

CONTENTS	Page
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	
RAMAGE FULL-SCALE TRIALS	3
MODEL 5513 DESIGN EXPERIMENTS	4
PERFORMANCE COMPARISON, RAMAGE VS. MODEL 5513	5
GEOSIM MODELS EXPERIMENTAL SERIES	7
PERFORMANCE COMPARISON, FULL-SCALE VS. GEOSIM MODELS	8
GUIDANCE FOR PROJECTING FULL-SCALE STERN FLAP PERFORMANCE	12
CONTINUED RESEARCH DDG 51 Stern Flap Scaling Effects Study Application to Other Types of Hullforms CFD Analysis	17 17
CONCLUSIONS	18
ACKNOWLEDGMENTS	19
REFERENCES	21
APPENDIX A: FULL-SCALE TRIALS DATA AND MODEL-TEST EVALUATIONS	Al
APPENDIX B: MODEL-SCALE TRANSOM FLOW OBSERVATIONS	B1

	<u>FIGURES</u>	Page
1.	Photograph of completed stern flap installation on USS CURTIS WILBUR (DDG 54)	2
2.	Stern flap performance ratio on USS RAMAGE (DDG 61) compared to that of model-scale experiments	6
3.	Bow and stern photographs of the three geosim DDG 51 Models, 5488 (black), 5513 (gray), and 9141 (yellow)	7
4.	DDG 51, stern flap performance ratios, geosim model series and adjusted full-scale data, all representing an equivalent 10° stern flap configuration	9
5.	Stern flap performance, evaluated as change in delivered power, based on platform scale, DDG 51, 10° stern flap	11
6.	Stern flap performance, model-scale relative to full-scale, DDG 51, 10° stern flap	11
7.	Stern Flap Scaling Multiplier: Analysis tool for evaluating stern flap scaling effects. (Based on DDG 51 scaling study with 10° stern flap.)	13
8.	Stern flap performance trials on USS <i>RAMAGE</i> (DDG 61) comparison to model-scale performance and new adjusted projection with scaling effects accounted for by proposed technique	15
9.	Stern flap performance trials on USS A.W. RADFORD (DD 968), USS COPELAND (FFG 25), USS SHAMAL (PC 13), and WPB1345 STATEN ISLAND, comparison to model-scale performance and new projections plus scaling effects	16
	TABLES	Page
1.	DDG 51 Class full-scale trials and model-scale experiments available for the present stern flap scaling effects evaluation	3
2.	Stern flap performance from trials conducted on USS RAMAGE (DDG 61)	4
3.	Model-scale stern flap performance on DDG 51 Class	5
4.	Differences in stern flap performance, full-scale trials versus model-scale experiments	6
5.	Model-scale stern flap performances from DDG 51 geosim model series	8
6.	DDG 51 stcrn flap performances, geosim model series and full-scale trials, all representing an equivalent 10° stern flap configuration	9
7.	DDG 51 model-scale stern flap performance adjusted for scaling effects by proposed technique, and resultant full-scale projected performance	14

ABSTRACT

The installation of a prototype stern flap on the USS RAMAGE (DDG 61), the 11th destroyer of the DDG 51 Class, with associated stern flap evaluation trials, has provided invaluable information towards the continuation of the stern flap scale effects investigation.

Comparison of stern flap trials results on *RAMAGE*, to that of a geosim model experiment series, was utilized for the refinement of techniques for extrapolation of model test data to full-scale performance. A practical technique, by which full-scale stern flap performance at sea could be projected from model-scale experimental data, is presented. An analysis tool for evaluating stern flap scaling effects, to be utilized with model-scale experimental results, to better project full-scale stern flap performance, was formulated. This formulation has several distinct advantages over its predecessor. Foremost, is the inclusion of the *RAMAGE* trials data in the updated version. In addition, the stern flap scale effects, as represented in this analysis tool, are dependant on not only the tested model scale ratio and speed range as before, but also on the magnitude of the model-scale performance relative to that of the study case.

ADMINISTRATIVE INFORMATION

This work was performed at the David Taylor Model Basin (DTMB), Carderock Division, Naval Surface Warfare Center (NSWCCD), Resistance and Powering Department, Code 5200. The DDG 61 Stern Flap Trials were funded by the Energy Plans and Policy Branch, OPNAV N420, through the Shipboard Energy R&D Office, NSWCCD Code 859, Sponsor R823. Continued stern flap scaling effects research was funded through the Stern Flap Dual Use Science & Technology initiative, sponsored by the Office of Naval Research, ONR 333.

INTRODUCTION

Through a great variety of model-scale and full-scale test programs, the U.S. Navy has shown that a small extension of the hull bottom surface aft of the transom, known as a stern flap, can improve the speed/power performance of many different types of ships; Karafiath, Cusanelli, and Lin [1]. While significant powering improvement is indicated through model-scale design experiments, the actual performance of full-scale prototype stern flaps have generally exceeded that of the model-scale predictions, especially at low speeds; Cusanelli [2]. This circumstance leads the designer to conclude, that as a consequence of the smaller scale, the flow conditions around the model stern flap are not truly representative of that on the ship.

The ARLEIGH BURKE (DDG 51) Class destroyer was chosen as the ship platform for the stern flap sealing investigation. The present study is a continuation of the investigation into the sealing effects involved in stern flap performance, with the intention of developing an appropriate method for extrapolating model test data to full-seale performance predictions.

Previously, model experiments were conducted on three different DDG 51 Class geometrically-similar models (referred to herein as "geosim" models), a 38 ft (11.6 m) scale ratio 12.866 model, a 24 ft (7.3 m) scale ratio 20.2609 model, and a 14 ft (4.3 m) scale ratio of 36.0 model. It was determined through these model experiments, and associated computational fluid dynamics (CFD) calculations, that stern flap performance did improve as model size increased, and an initial method of model-scale to full-scale extrapolation was developed; Cusanelli, Percival, and Lin [3]. A full-scale stern flap trial on a DDG 51 destroyer had yet to be conducted, and therefore, ship/model comparisons were made with available full-scale stern flap trials data on various other U.S. Navy classes.

Since the time of the initial stern flap scaling investigation, the U.S. Navy has installed stern flaps on a number of *ARLEIGH BURKE* Class destroyers, one of which is presented as Fig. 1. In December, 2000, pre- and post-stern flap performance evaluation trials were completed on the USS *RAMAGE* (DDG 61); Cusanelli, Brodie, and Chirichella [4]. Once again, the performance of the full-scale prototype stern flap exceeded that of the model-scale prediction. The *RAMAGE* full-scale stern flap trials provides invaluable information towards the continuation of the stern flap scale effects investigation.

Fig 1. Photograph of completed stern flap installation on USS CURTIS WILBUR (DDG 54)

Concept Background and Descriptions

The stern flap retrofit to RAMAGE was designed to be installed behind a stern wedge, which was inlayed into the transom plating of all ARLEIGH BURKE (DDG 51) Flight I/II hulls at the time of their initial construction. This particular stern flap design condition distinguishes it from all previous full-scale tested U.S. Navy combatant stern flaps. Stern wedges and stern flaps are very similar, and also operate along similar principles. While a stern flap is an extension of the hull bottom surface which effectively lengthens the ship aft of the transom, wedges are located completely under the hull beneath the transom (and generally inlayed into the transom plating). The DDG 51 Flight I/II stern flap design program, initiated in 1996, provided the first model-test confirmation that a stern flap, installed in addition to the hull's existing wedge, could further reduce the powering requirements; Cusanelli [5]. The combination of the two concepts, patented as the integrated wedge-flap [6], initiates forward of the transom under the hull (wedge portion) and extends aft of the transom (flap portion).

The stern flap portion <u>alone</u> of the integrated wedge-flap, as a retrofit, results in the stern flap performance benefits presented herein on *RAMAGE* (DDG 61), and extended to the *ARLEIGH BURKE* Flight I/II Class, as a whole. The *RAMAGE* stern flap performance, solely, will be utilized for the comparison to the model experiments, and for the continued evaluation of stern flap sealing effects.

The available DDG 51 Class full-scale trials and model-scale stern flap configurations, Table 1, provide for an invaluable, but not an entirely complete, data set for the stern flap scaling effects

investigation. Each line entry of Table 1 represents both with and without flap comparative tests. The *RAMAGE* stern flap, 4.7 ft chord, 24 ft span, and 13° trailing edge down (TED) was installed behind the fleet 3.2 ft chord, 13° TED wedge. This stern flap configuration was tested on only the mid-sized Model 5513. The stern flap design tested on all three of the DDG 51 models during the geosim series had the similar chord length and span, but with an angle of 10° TED, and no stern wedge installed.

Table 1. DDG 51 Class full-seale trials and model-seale experiments available for the present stern flap sealing effects evaluation

	Transom Configuration							
Platform	Size	Displ. (tons)	. I Avedde I		Stern Flap			Test(s) Conducted
		(10113)	Chord	Angle	Chord	Span	Angle	
RAMAGE (DDG 61)	Full-Scale	8680	3.2'	13°	4.7'	24'	13°	Speed/Power Trials
Model 5513	1:20.261	8900	3.2'	13°	4.7'	24'	13°	Resistance & Power
Model 5488	1:12.866	8900	(noi	ne)	4.6'	24'	10°	Resistance
Model 5513	1:20.261	8900	(noi	ne)	4.6'	24'	10°	Resistance
Model 9141	1:36.0	8900	(noi	ne)	4.6'	24'	10°	Resistance

At the time of the initial stern flap sealing investigation [3], there was no assurance that full-seale stern flap evaluation trials would be conducted on a DDG 51 destroyer. Therefore, the geosim model hulls and model-seale stern flaps were configured so that the most accurate comparisons could be made to available trials data on U.S. Navy combatants, all of which had 10° TED flaps and no wedges. It was also felt that the removal of the DDG 51 transom wedge would better serve to isolate the performance of the stern flap at model-seale.

In order to determine meaningful stern flap sealing effects between the speed/power data of the *RAMAGE* stern flap trials (with wedge), and the geosim model test series stern flap eonfiguration (no wedge) resistance data, several parallel comparisons must first be made through the Model 5513 resistance and powering data and configurations common to both sets.

RAMAGE FULL-SCALE TRIALS

The USS RAMAGE (DDG 61) was assigned by Surface Fleet Atlantic (SURFLANT) as a test ship for the stern flap evaluation. A baseline speed/power trial on RAMAGE was accomplished in June 2000. The stern flap was installed, at pier-side, using a cofferdam, during the period of 2-27 Oct. 2000, and the stern flap speed/power trial was completed in December 2000. Comparisons were made between the pre- and post-flap trials, and stern flap performance was determined. Complete descriptions of the pre- and post-flap trials conducted on RAMAGE, including performance comparisons and additional photographs, are presented in Reference 4. The reported trials data are reproduced in Appendix A, Tables A1 and A2. A summary of the full-scale stern flap performance on RAMAGE is presented in Table 2. Data presented in Table 2 are representative of ship trials conditions of 8680 tons displacement and clean hull, equivalent to that of the stern flap trial.

Table 2. Stern flap* performance from trials conducted on USS RAMAGE (DDG 61)

	Baseline Total	Stern Flap * Total	Stern Flap* Power
Ship Speed	Shaft Power	Shaft Power	Reduction
(knots)	(hP)	(hp)	(%)
12	2650	2500	-5.6
14	5189	4600	-11.3
16	7443	6300	-15.4
18	10,628	9,090	-14.5
20	14,844	12,850	-13.4
22	20,021	17,590	-12.1
24	26,584	23,650	-11.0
26	36,365	31,940	-12.2
28	52,311	47,750	-8.7
30	81,365	73,640	-9.5
30.9	100,000	85,950	-14.1
31.8	N/A	100,000	N/A

^{*}Stern Flap 13° installed behind transom wedge

The stern flap evaluation trials on *RAMAGE* indicated that the stern flap reduced the ship power-at-speed by 5.6% to 15.4%. It appeared to have virtually no negative impact on ship operations on a speed/power basis. The stern flap also increased the top speed of the *RAMAGE* by 0.9 knots. However, in order to attain full propulsion plant power, and achieve the maximum 31.8 speed with flap installed, it was necessary to increase the propeller pitch by approximately 5% over design. The stern flap data also shows a substantial power reduction of more than 14,000 hP (14.1%), at the 30.9 knot maximum ship speed achieved by the baseline ship. Trials indicate that the installation of a stern flap, on a DDG 51 Class Flight I/II destroyer, will result in a net annual fuel savings of 4726 barrels (7.5% reduction) per ship. The annual fuel cost savings will be \$195,000 per ship.

MODEL 5513 DESIGN EXPERIMENTS

Experiments were conducted on Model 5513 to evaluate the installation of a stern flap, in addition to the transom wedge, on the DDG 51 Class Flight I/II destroyers [5]. This model-scale stern flap design & optimization program was the initial assessment of the integrated wedge-flap design. Model 5513 was ballasted to the reported class representative ship displacement of 8900 tons, even keel, for the stern flap experiments. The *RAMAGE*, at the time of the stern flap trials, was 8680 tons displacement.

Several stern flap designs, varying in ehord length from 0.5% to 1.0% of the ship LBP, and angles from 3° to 17° trailing edge down (TED) relative to the local centerline buttock slope (run), were evaluated behind the DDG 51 fleet transom wedge. The fleet wedge, designed to be an integral part of the hull, has a ehord length of 0.68% LBP and a nominal centerline angle of 13°. A complete description of the Model 5513 test series, including details of tested flap geometry, additional photographs, and all experimental results, are presented in Reference 5.

The stern flap selected had the following full-seale dimensions: ehord length of 4.7 ft (1.0% LBP), an angle of 13° TED (parallel to the 13° centerline angle of the fleet wedge), and a span of 24 ft across the transom. This stern flap configuration is the same as that installed on *RAMAGE*. The reported model-seale powering data, including still air drag (to be comparable to trials conditions), for the baseline and selected stern flap configurations, are reproduced in Appendix A,

Tables A3 and A4, and are summarized in Table 3. The stern flap portion (alone) of the integrated wedge-flap results in the change in performance presented in Table 3.

Table 3. Model-scale stern flap* performance on DDG 51 Class

Ship Speed (knots)	Baseline Total Shaft Power (hP)	Stern Flap * Total Shaft Power (hp)	Stern Flap* Power Reduction (%)
10	1473	1494	+1.4
12	2629	2634	+0.2
14	4240	4212	-0.7
16	6391	6319	-1.1
18	9336	9086	-2.7
20	13,398	12,895	-3.8
22	19,236	18,353	-4.6
24	25,699	24,169	-6.0
26	34,482	32,541	-5.6
28	51,061	48,236	-5.5
30	74,689	70,034	-6.2
31.8^	100,000	93,597	-6.4
32.2^	N/A	100,000	N/A

^{*}Stern Flap 13° installed behind transom wedge. Configuration nominally equivalent to RAMAGE.

The model-seale stern flap experiments indicated a maximum stern flap power-at-speed reduction of 6.4%, and an increase in the top speed of 0.4 knots. The model-seale experiments also indicated that at speeds of 12 knots and below, the stern flap would result in an increase in ship delivered power. This low speed powering penalty has not been measured in any of the full-seale stern flap applications, and is now believed to be a model-scale phenomena.

PERFORMANCE COMPARISON, RAMAGE VS. MODEL 5513

The RAMAGE and Model 5513 stern flap geometry is nominally equivalent, however, some small differences were present due to ship construction tolerances. The stern flap evaluation trials on RAMAGE indicated that the stern flap reduced the ship power, and increased the ship top speed, to a greater extent than that projected from the model experiments. A ship versus model comparison of the stern flap performance ratio is presented in Fig. 2. The performance ratio is defined by the delivered power (PD) for the ship with the stern flap installed divided by the PD for the baseline (no flap) ship. A value below 1.0 indicates a power reduction due to the stern flap. The magnitude of the model-to-ship stern flap scale effect is indicated by the yellow shaded region in Fig. 2. As has been indicated in all other stern flap programs to date, the greatest performance differences between model and full scale appear to be at low speed. In the case of the RAMAGE, the model-scale tests under-predicted the stern flap performance in the range of 12% at speeds of 14 to 18 knots, but only by approximately 2% when approaching top speed.

[^]Maximum speeds are higher at model-scale, because propeller cavitation is not present.

Fig. 2. Stern flap performance ratio on USS RAMAGE (DDG 61) compared to that of model-seale experiments

Table. 4. Differences in stern flap performance, full-seale trials versus model-seale experiments

The magnitude of the model-to-ship stern flap seale effect is summarized in Table 4 with an associated graphic representation. A very simplified 3rd order polynomial curve is shown through the scale effect values.

GEOSIM MODEL EXPERIMENTAL SERIES

The DDG 51 Class destroyer was chosen as the model test platform because three greatly different sized geosim models exist for this class, as shown in Fig. 3. The largest, Model 5488

(black), was built at DTMB to a scale ratio 12.866, with overall length of 38 ft. The mid-sized Model 5513 (gray), was built at DTMB, scale ratio 20.2609, and is 24 ft in length. The smallest, Model 9141 (yellow), has a scale ratio of 36.0, and length of 14 ft. Model 9141 was built by the U.S. Naval Academy, Annapolis. The models were similarly appended, with/without the model-scale stern flap, at the displacement of 8900 tons, even keel. Complete descriptions and comparisons of all three geosim models, additional photographs, and experimental results, are presented in Reference 3.

The geosim series stern flap had full-scale dimensions of 4.6 ft chord, 24 ft span, and angle of 10° TED. For both the baseline and stern flap configurations, the DDG 51 Flight I/II transom wedge was removed. At the time of the initial stern flap scaling investigation, there was no assurance that full-scale stern flap evaluation trials would be conducted on a DDG 51 destroyer. Therefore, the model hulls and model-scale stern flaps were configured so that the most accurate comparisons could be made to available trials data on U.S. Navy combatants. Previous stern flap trials had been conducted on the A.W. RADFORD (DD 968) and the COPELAND (FFG 25). Both of these prototype stern flaps had chord lengths of 1.0% LWL, angles of 10° TED, and did not include wedges in the associated hull designs. It was also felt that the removal of the DDG 51 transom wedge would better serve to isolate the performance of the stern flap at model-scale.

Fig 3. Bow and stern photographs of the three geosim DDG 51 Models, 5488 (black), 5513 (gray), and 9141 (yellow)

During the geosim model series, only resistance experiments (for predictions of effective power) were conducted. A summary of the effective powers for baseline and stern flap configurations, from the DDG 51 geosim model series, is presented in Table 5. The performance of the stern flap at model-scale, that is, the ability of the stern flap to reduce ship effective power, increased with increasing model size. Essentially the larger the model, the better the stern flap performance. The geosim models also indicated that the "cross-over" speed, i.e. the speed where the stern flap first begins to reduce ship resistance, decreased with increasing hull size, indicated by **bold-face** in Table 5. Again, the low speed powering penalty has not been measured in any of the full-scale applications, and is now believed to be a model-scale phenomena.

Table 5. Model-scale stern flap* performances from DDG 51 geosim model series

	Large	Model 5488		Mid-Siz	Mid-Size Model 5513			Small Model 9141		
Speed (knots)	Baseline PE (hP)	Stern Flap* PE (hP)	Effect (%)	Baseline PE (hP)	Stern Flap* PE (hP)	Effect (%)	Baseline PE (hP)	Stern Flap* PE (hP)	Effect (%)	
10	972	993	+2.1	979	1006	+2.7	1074	1133	+5.5	
12	1725	1753	+1.6	1740	1777	+2.1	1868	1952	+4.5	
14	2837	2837	0.0	2838	2867	+1.0	2991	3074	+2.8	
16	4347	4289	-1.3	4321	4334	+0.3	4501	4557	+1.2	
18	6438	6273	-2.6	6299	6229	-1.1	6500	6500	0.0	
20	9549	9149	-4.2	9080	8848	-2.6	9319	9179	-1.5	
22	13970	13245	-5.2	13011	12495	-4.0	13559	13172	-2.9	
24	18936	17837	-5.8	17550	16576	-5.5	18774	18083	-3.7	
26	25264	23781	-5.9	23598	22231	-5.8	25261	24194	-4.2	
28	36390	34496	-5.2	34096	32338	-5.2	36192	34752	-4.0	
30 32	53248 73923	50615 70053	-4.9 -5.2	49743 68668	47227 65048	-5.2 -5.1 -5.3	52660 73084	50284 69561	-4.5 -4.8	

^{*}Stern Flap 10° with transom wedge removed.

PERFORMANCE COMPARISON, FULL-SCALE VS. GEOSIM MODELS

In order to determine meaningful stern flap scaling effects between the speed/power data of the *RAMAGE* stern flap trials (with wedge), and the geosim model test series stern flap configuration (no wedge) resistance data, several parallel comparisons must first be made through the Model 5513 resistance and powering data and configurations common to both sets.

Stern flap performance on *RAMAGE* was based on trials data of ship total delivered power (PD). From the DDG 51 geosim model series, only resistance (effective power) was determined. There is no technique for determining ship effective power from full-scale trials data. However, delivered power can be determined, fairly accurately, from model-scale effective power, if previous resistance and powering experiments have been conducted. Baseline and stern flap resistance and powering experiments were conducted on Model 5513 with 13° stern flap, Reference 5. The Model 5513 propeller-hull interaction coefficients were utilized, with the respective geosim model series effective powers, to generate geosim model powering data, with/without stern flap. The resultant powering data is presented in Appendix A, Tables A5-A11.

Full-scale performance for a DDG 51 with no wedge and 10° stern flap, based on the RAMAGE trials, was then estimated. The magnitude of the 13° stern flap RAMAGE - to - Model 5513 scaling effects, Table 3, was applied to the 10° stern flap delivered power performance determined on Model 5513, in order to estimate the full-scale 10° stern flap performance. Details of this analysis are presented in Appendix A, Table A12. Table 6 and Figure 4 present the comparison of stern flap powering performance, based on geosim model series and full-scale trials. The comparison is again in the form of the stern flap performance ratio, where a value below 1.0 indicates a power reduction.

Table 6. DDG 51 stern flap performances, geosim model series and full-seale trials, all representing an equivalent 10° stern flap configuration*

		Geosim Models						
Speed	Full Scale	Large	MId-Size	Small				
(knots)	PD (%)	PD (%)	PD (%)	PD (%)				
10	-9.0	+1.4	+2.0	+4.8				
12	-9.7	+0.8	+1.3	+3.8				
14	-10.7	-0.8	+0.3	+2.1				
16	-11.0	-2.2	-0.5	+0.4				
18	-11.8	-3.6	-2.1	-1.0				
20	-12.3	-5.4	-3.7	-2.6				
22	-12.9	-6.7	-5.4	-4.2				
24	-13.6	-7.6	-7.2	-5.4				
26	-12.9	-7.8	-7.7	-6.1				
28	-11.4	-7.4	-7.3	-6.0				
30	-10.7	-7.4	-7.5	-6.9				
32	-10.2	-7.8	-7.8	-7.3				

^{*}Full-scale performance based on scale effect determined from RAMAGE 13° flap trials applied to 10° flap model-test data. Model-scale performance based on geosim model series resistance experiments with propeller-hull interaction coefficients determined from Model 5513 powering experiments.

Fig 4. DDG 51, stern flap performance ratios, geosim model series and adjusted full-scale data, all representing an equivalent 10° stern flap configuration

A comparison of the stern flap performance, evaluated as percent change in delivered power due to the stern flap, based on platform scale, is presented in Fig. 5. The data has been separated into seven speed sequences, based on Froude Number (F_N) increments of 0.5, to make it more

useful for a parametric evaluation. The data of Fig. 5 were then normalized by the full-scale performance at each of the seven speeds, and presented as the stern flap performance adjustment factor, in Fig. 6. This factor appraises the relative stern flap powering performance, model-scale versus full-scale. The data falls into a clear family of curves, showing that stern flap powering performance (i.e. the magnitude of the stern flap reduction in delivered power) improves significantly with increasing platform size. Also, the lower speed model-scale data exhibits considerably greater performance differences versus full-scale than at the higher speeds. For all speeds, as model scale ratio is increased (model size decreased), the stern flap powering rapidly attains a fixed performance level, which remains fairly constant between model scale ratios of 15 through 30. The data indicate that for model scale ratios greater than 30, the accuracy to which stern flap powering performance can be predicted diminishes rapidly.

Qualitative comparisons of the localized flow patterns around the transoms of the three DDG 51 models also indicate substantial variations across model scales, as depicted in Appendix B, Figure B1. As model size is increased, the model wake becomes visually more like that of a full-scale ship wake, it is more turbulent, depicts better eddy-making, and it contains a greater concentration of whitewater. As a generalization, the transom flow patterns exhibited on the larger model, are not reproduced until a speed $2 \sim 4$ knots higher on the mid-size model, with an additional $3 \sim 5$ knot higher speed increment necessary for the small model.

Visual evidence, as to the scaling differences between the model sizes, is best depicted at a speed of 22 knots, which exemplifies some of the characteristic differences between the local transom flows. The wake of the larger Models 5488 and 5513 appear to contain reasonable amounts of whitewater at 22 knots, and in fact, for speeds as low as 14 knots. To the contrary, the small Model 9141 wake seems to contain little whitewater until speeds above 22 knots.

The three models show significant differences in transom flow "breakaway" speed (speed for clean unattached transom flow). The transom breakaway speed for the baseline configuration (no stern flap), for large model was approximately 22 knots, for the mid-size model was approximately 30 knots, while for the small model breakaway was (unrealistically) never attained. With the stern flap installed, the transom breakaway speed for large and mid-size models were 20 and 24 knots respectively, while for the small model breakaway was again not achieved until above 32 knots. These differences in model scale transom flow breakaway speeds gain even greater significance when compared to the full scale breakaway speeds which were observed during the stern flap evaluation trials to be as low as $16 \sim 18$ knots when the stern flap was installed, and $22 \sim 24$ knots for the baseline configuration.

At 22 knots, with stern flap installed on large Model 5488, the flow has detached from the transom, and there is little evidence of any rotational vortices which were present at lower speeds. The mid-size Model 5513 still exhibits some attached flow rolling back over the center third of the flap, (flow in transition), and contains strong rotational vortices. For small Model 9141, the flow is fully attached across the entire transom, and the rotational vortices are just beginning to form.

The stern flap effects the transom flow as follows. The transverse width of the stern wave pattern was significantly reduced. For the baseline case, the stern waves widen rapidly as they move aft of the transom, whereas, the stern flap causes a considerable "neck down", or reduction in width, prior to the waves becoming wider moving aft. The total area of turbulence and whitewater is reduced. The flow patterns suggest that the stern flap's increase in the hydrodynamic length of the ship is greater than the chord length of the flap itself. Transom flow breakaway speeds were reduced 6 to 8 knots by the flap.

Froude No.

Stern Flap Performance Based on Scale

 ∞

0.15

0.2

9

0.25

0.35 0.3

0.4

0.45

10° stern flap

2

10

Scale Ratio (λ)

30

35

-14

-12

relative to full-scale, DDG 51, 10° stern flap

delivered power, based on platform scale, DDG 51, Fig. 5. Stern flap performance, evaluated as change in

Stern Flap Performance: Change in Delivered Power (%) $\frac{1}{2}$ $\frac{1}{2}$

GUIDANCE FOR PROJECTING FULL-SCALE STERN FLAP PERFORMANCE

The objective of this stern flap scale effects investigation has always been the formulation of a practical technique by which full-scale stern flap performance at sea could be projected from model-scale experimental data.

Many different extrapolation approaches and plotting methods were examined in the initial research [5]. The concept of a single graphic "analysis tool" was developed, which, when grouped by speed increments, could indicate the additional improvement necessary to be applied to stern flap model test data in order to project full scale performance. This technique still appears to be the best means of accounting for the scaling effects, however, through repeated uses on many subsequent model-scale stern flap test series, one disadvantage became apparent. This initial analysis tool proved reasonable for projecting full-scale stern flap performance on combatant vessels, such as the DDG 51 from which it was developed. However, the suggested model-scale to full-scale performance improvements appeared to be too large in magnitude to be practical for application to hulls where the overall stern flap performance was not as beneficial as that on combatants.

In the combatant applications, the model-scale stern flap delivered power reductions, over the targeted speeds, ranges from about 6% to as much as 10%. On smaller hulls such as planing or semi-planing craft, or on larger hulls such as amphibious, sea lift, and carriers, where the objective of the stern flap design could be greatly different from that of a combatant, the model-scale stern flap delivered power reductions were frequently in the range of only 2% to 4%. It was apparent that the application of the stern flap scaling effects developed for the combatant cases, to stern flap applications that had only a fraction of the comparable model-scale performance effect, was not justified.

It was necessary to develop a modified scale effect analysis tool, that accounted for the magnitude of the model-scale power reduction (model-scale stern flap performance). The applied stern flap scale effect should be dependent on not only on the tested model scale ratio and speed range, but also on the model-scale performance in comparison to that on the DDG 51 from which the scaling data was developed (the stern flap performance adjustment factor). In order to do this, the stern flap delivered power performance of each of the geosim models was normalized by its peak performance (defined as maximum power reduction) within the targeted speed range. For the DDG 51 large, mid-sized, and small geosim models, the peak performances were 7.9, 7.7, and 6.1 percent power reductions, respectively.

The stern flap powering data, re-analyzed by the aforementioned method, is presented as the "stern flap scaling multiplier" in Fig. 7. The model-scale and full-scale stern flap data, presented in this way, form a family of curves with, effectively, values on the Fig. 7 ordinate (y-axis) of stern flap scaling effects as multipliers of the peak recorded model-scale performance. Figure 7 represents the updated analysis tool for evaluating stern flap scaling effects.

Fig 7. Stern Flap Scaling Multiplier: Analysis tool for evaluating stern flap scaling effects. (Based on DDG 51 scaling study with 10° stern flap.)

The proposed technique by which to utilize the stern flap scaling multiplier and analysis tool is presented in Table 7. The model-scale data presented in Table 2 of this report, for the Model 5513 DDG 51 Flight I/II stern flap (chord length 1.0% LBP, angle of 13° TED, installed behind the flect wedge), will be utilized in the following example.

Proposed technique for sealing model stern flap data to full-seale, referring to Table 7:

- Model-seale speeds are converted to F_N, Column A. F_N in increments of 0.5 can be scleeted so that the stern flap scaling multipliers can be read directly off the curves of Fig. 7.
- Values of the stern flap sealing multipliers on the ordinate (y-axis) are determined for each F_N , at the scale ratio of Model 5513, $\lambda = 20.2609$ on the abseissa (x-axis), Column B.
- The model-scale experimental stern flap performance data is recorded in Column C.
- Model-scale stern flap performance "peak" (maximum delivered power reduction) is recorded in Column D. The peak performance was chosen at $F_N = 0.35$ (25 knots). It is recommended to utilize the stern flap peak performance within the target speed range for the stern flap design, rather than performance at either the high or low ends of the ship's speed range, where the stern flap may exhibit even greater power reduction.
- The estimate of the beneficial stern flap scaling effect, Column E, is determined by multiplying the model scale peak performance (Column D) by the scaling multipliers (Column B).
- The projected full-scale stern flap performance, Column F, is then determined by increasing the model-scale delivered power reduction (Column C) by the amount indicated for the scaling effect (Column E).

Table 7. DDG 51 model-scale stern flap performance adjusted for sealing effects by proposed technique, and resultant full-scale projected performance

Column A	Column B	Column C	Column D	Column E	Column F
	$\lambda = 20.2609$	Measured	25 knots		Projected
	Model 5513 Stern Flap Scaling Multiplier	Model-Scale Stern Flap Performance	Model-Scale Flap "Peak" Performance	Beneficial Stern Flap Scaling Effect	Full-Scale Stern Flap Performance
Fn	(Fig. 7)	(%)	(%)	(%)	(%)
0.15	1.43	+0.9	-6.5	-9.3	-8.4
0.20	1.41	-0.8	-6.5	-9.2	-9.9
0.25	1.25	-2.7	-6.5	-8.1	-10.8
0.30	0.94	-4.6	-6.5	-6.1	-10.7
0.35	0.75	-6.5	-6.5	-4.9	-11.3
0.40	0.47	-5.8	-6.5	-3.1	-8.9
0.45	0.27	-6.4	-6.5	-1.8	-8.1

 The full-seale stern flap delivered power would be estimated by reducing the baseline delivered power by the percentage amount indicated by the projected full-scale stern flap performance (Column F).

The scaling effects indicated by the proposed technique, Table 7, were then applied to the DDG 51 stern flap application, (1% chord at 13° TED installed behind the fleet wedge), for which there exists both Model 5513 data and full-scale data on *RAMAGE*. Figure 8 presents the stern flap performance in ship trials, as compared to original model-scale performance, and the new model projection accounting for scale effects. Of course, this represents an idealized case for the stern flap scaling effects correction, since the basis of its development was the 5513 model-scale versus *RAMAGE* data. The simplification of the ship/model flap performance comparison data, to the single 3rd order polynomial presented in the Table 3 graphic, smoothes out the determined

"projected" full-scale performance with scale effect data of Table 7 and Fig. 8. The correlation between the full-scale *RAMAGE* trials data and that of the projected data (model plus scale effect), is far better than that of the original model-scale data. Even though the new model plus scaling projection does not precisely emulate the *RAMAGE* data, the time-averaged delivered power performances, when summed across the entire speed range, would now become more equivalent.

Fig 8. Stern flap performance trials on USS *RAMAGE* (DDG 61) comparison to model-scale performance and new adjusted projection with scaling effects accounted for by proposed technique

The "stern flap scaling multiplier" analysis tool and proposed technique was further exercised by application to the data of four additional stern flap applications for which there exists both model-scale and full-scale data. These four cases are: destroyer USS A.W. RADFORD (DD 968), frigate USS COPELAND (FFG 25), patrol coastal USS SHAMAL (PC 13), and U.S. Coast Guard patrol boat WPB1345 STATEN ISLAND. Figure 9 presents the stern flap performance during ship trials, as compared to original model-scale performance, compiled from References 7 through 15, and the new model plus scaling projections.

Fig 9. Stern flap performance trials on USS A.W. RADFORD (DD 968), USS COPELAND (FFG 25), USS SHAMAL (PC 13), and WPB1345 STATEN ISLAND, comparison to model-scale performance and new projections plus sealing effects

The destroyer A.W. RADFORD, exhibits remarkably similar performances between the trials and the new model plus sealing projection. This ship, by virtue of being a twin-serew destroyer hullform, is very similar to the DDG 51 hullform on which the stern flap scaling effects study was based. It appears that the proposed method for estimating stern flap scaling effects works exceptionally well when applied to this type of similar hullform. The new model plus scaling projection for the COPELAND lies within the range of the ship trials data, however, the proposed technique does appear to project stern flap scaling effects that are larger in value than measured.

The performances of the prototype stern flaps on both SHAMAL and STATEN ISLAND are significantly better than the original model-scale performance and the projection with sealing

effects included. For this type of stern flap application, even the lowest speeds tested represent F_N in the range of the highest speeds for which the stern flap scaling effects were developed. The assumption that the scaling effects data, developed for a displacement hull in the speed range $0.15 \le F_N \le 0.45$, is applicable to a semi-planing or planing craft at higher speeds, is unsupported. In such cases, the designer must simply assume that the stern flap scaling multipliers remain unchanged for $F_N = 0.45$ and above. The *SHAMAL* and *STATEN ISLAND* trials appear to indicate that the technique for applying the current stern flap scaling effects developed for the DDG 51 destroyer hullform, is not appropriate for these smaller high speed craft.

CONTINUED RESEARCH

DDG 51 Stern Flap Scaling Effects Study

The available DDG 51 Class full-scale trials and model-scale stern flap configurations (Table 1), provide for an invaluable, but not an entirely complete, data set for the stern flap scaling effects investigation. The current work was prepared using a methodology best suited to, but also restricted by, the available DDG 51 stern flap data. In order to fully complete the DDG 51 full-scale / model-scale stern flap data set, the following model-scale experiments are recommended:

- Ship/Model correlation (resistance and power) between *RAMAGE* baseline and stern flap trials and Model 5513. Model displacements/drafts and configurations corresponding to baseline trials conditions with fleet wedge design installed, and stern flap trials conditions with flap design equivalent to that manufactured at full-scale on RAMAGE.
- New geosim models test series (resistance). Model displacement/draft to correspond to stern flap trials conditions. Stern flap design and fleet wedge equivalent to installation on RAMAGE.

Application to Other Types of Hullforms

Interest has been increasing in the area of stern flap applications to large military platforms such as carriers, larger monohulls (sea lift, auxiliaries), and amphibious ships, and commercial vessels such as passenger/car ferries and cruise ships. Recent programs have been successful in designing stern flaps for these large-sized vessels, where beneficial model-scale performance has been exhibited at high speed. However, even the top speed of some of these hullforms may be in a F_N range where large stern flap scaling effects have been shown on destroyers, and they may regularly operate at speeds substantially lower than those of the DDG 51 study. Due to the large size of these vessels, upwards of 800 ft in length, model-scale representations are frequently built to scale ratios of 30 or greater. The DDG 51 data indicates that for model scale ratios greater than 30, the accuracy to which stern flap powering performance can be predicted diminishes rapidly. The challenge is to determine the scaling effects and ultimately project the full-scale performance at these low F_N ranges, on these relatively high scale ratio models, in order to effectively design stern flaps for application to these types of hullforms.

Full-scale data on small, high speed, semi-planing craft, indicate that stern flaps may still perform better than the model data indicates, even with the current process of adjustment for stern flap scaling effects. Because these types of craft typically operate a speeds substantially above the $F_N = 0.45$ maximum for the DDG 51 scaling study, data does not yet exist for the evaluation of stern flap scale effects over much of their speed range. These models are typically built to scale ratios far lower (generally less that 8) than those studied on destroyers. The assumption that the scaling effects data, developed for a displacement hull, is applicable to these craft at higher speeds, and for lower scale ratios, is unsupported.

For a wider application of stern flaps to all ship types, and a better understanding of the beneficial stern flap scaling effects, stern flap research should be continued in these general topic areas:

- Model-scale tests at speeds both higher and lower than those studied thus far on destroyers.
- Additional model-scale design experience for a high-speed planing or semi-planing craft, and for larger displacement hulls and amphibious ships.
- Full-scale prototype stern flap installation and evaluation trials on a large displacement hull or amphibious ship.
- Ship/Model correlation to pre- and post-flap trials conditions and configurations, for all fullscale tested prototype stern flaps.

CFD Analysis

Model-scale tests and CFD analyses have supported the understanding of the hydrodynamics of a stern flap on a transom stern ship. The physics of the free surface generated behind a ship, whether with or without a flap, needs to be more fully understood in order to better quantify the scaling effects present in this highly turbulent flow region. More detailed free-surface flow computations around the stern flap, for a variety of Reynolds numbers, should be analyzed so that the controlling mechanisms for stern flap scaling effects can be better defined/understood.

CONCLUSIONS

Beneficial stern flap scaling effects have been confirmed through model testing with various-sized geosim models of the DDG 51 destroyer, computational fluid dynamics calculations, and the comparison to recent full-scale stern flap evaluation trials on the USS *RAMAGE* (DDG 61).

An appropriate technique, by which full-scale stern flap performance at sea could be projected from model-scale experimental data, is presented. A "stern flap scaling multiplier" analysis tool and proposed technique for evaluating stern flap scaling effects, in order to project full-scale stern flap performance from model-scale data, was formulated. This formulation has several distinct advantages over its predecessor. Foremost, is the inclusion of the *RAMAGE* trials data in the updated version. In addition, the stern flap scale effects, as represented in this analysis tool, are dependant on not only the tested model scale ratio and speed range as before, but also on the magnitude of the model-scale performance relative to that of the study case.

The stern flap scaling effects tool and proposed analysis technique was utilized for the DDG 51 case, by applying the indicated scaling effects to the model-scale data, and comparing the resultant new stern flap performance projection to that of the *RAMAGE* trials. The same procedure was undertaken for three previous U.S. Navy stern flap programs, on the destroyer *A.W. RADFORD* (DD 968), the frigate *COPELAND* (FFG 25), and the patrol coastal *SHAMAL* (PC 13), as well as U.S. Coast Guard patrol boat WPB1345 *STATEN ISLAND*. The destroyers exhibit remarkably similar performances between the trials and the model with the new scaling projection, while the frigate lies within the range of the ship trials data. It appears that the proposed method for estimating stern flap scaling effects works well when applied to combatant hullforms. It appears that the current scaling methods developed for displacement hulls are not appropriate for semi-planing or planing craft at higher speeds.

For wider application of stern flaps to all ship types, the beneficial stern flap scaling effects, at speeds both higher and lower than those studied thus far on destroyers, and for models with large

scale ratios, still need to be better understood. For larger-sized vessels, the challenge is to determine the scaling effects and ultimately project the full-scale performance at low F_N ranges, on relatively high scale ratio models, in order to effectively design stern flaps for application to these types of hullforms. For small, high speed craft, the difficulty lies in projecting stern flap effects at speeds typically above the maximum speeds of the scaling study, where comparison data does not yet exist.

ACKNOWLEDGMENTS

The author would like to thank the officers and crew of USS RAMAGE (DDG 61) for their support during the preparation and conduct of the baseline and the stern flap trials, with special recognition extended to commanding officer, CDR C. W. Kiley, chief engineering officer, LT Blankenship, and Senior Chief Vallance. The stern flap evaluation trials were conducted by NSWCCD personnel under the direction of L. Hundley, with assistance from D. Cusanelli, G. Brodie, and E. Seifert.

This page intentionally left blank

REFERENCES

- [1] Karafiath, G., D.S. Cusanelli, and C.W. Lin, "Stern Wedges and Stern Flaps for Improved Powering U.S. Navy Experience", 1999 SNAME Annual Meeting, Baltimore, MD (Sept 1999)
- [2] Cusanelli, D.S., "Stern Flap Installations on Three US Navy Ships", ASNE 1998 Symposium 21st Century Combatant Technology, Biloxi, Mississippi, (Jan. 1998)
- [3] Reference not in public domain
- [4] Reference not in public domain
- [5] Reference not in public domain
- [6] Cusanelli, D.S., and G. Karafiath, "Combined Wedge-Flap for Improved Ship Powering", United States Patent No. 6,038,995, (March 21, 2000)
- [7] Reference not in public domain
- [8] Reference not in public domain
- [9] Cusanelli, D.S., and L. Hundley, "Stern Flap Powering Performance on a SPRUANCE Class Destroyer, Full Scale Trials and Model Experiments", Research to Reality in Ship Systems Engineering Symposium, Tysons Corner, VA, (Sept 1998)
- [10] Reference not in public domain
- [11] Reference not in public domain
- [12] Cusanelli, D.S., and W.L. Cave, "Effect of Stern Flaps on Powering Performance of the FFG-7 Class", Marine Technology, Vol. 30, No. 1, pp. 39-50, (Jan 1993)
- [13] Reference not in public domain
- [14] Cusanelli, D.S., "Stern Flap Powering Performance on the PC 1 Class Patrol Coastal, Full Scale Trials and Model Experiments", PATROL '96 Conference, New Orleans, LA, (Dec. 1996)
- [15] Cusanelli, D.S. and C.D. Barry, "Stern Flap Performance on 110 ft Patrol Boat USCG STATEN ISLAND (WPB 1345), NSWCCD-TR-2002/004, (January 2002)

This page intentionally left blank.

APPENDIX A

FULL-SCALE TRIALS DATA AND MODEL-TEST EVALUATIONS

	TABLES OF APPENDIX A	Page
A1.	USS RAMAGE (DDG 61) baseline trials results, fleet configuration with wedge, 8780 to	nsA3
A2.	USS RAMAGE (DDG 61) stern flap trials results, flap of 1% ehord at 13° installed behind fleet wedge, 8680 tons	A4
A3.	DDG 51 powering prediction from Model 5513, fleet configuration with wedge, 8900 tons, still air drag included	A5
A4.	DDG 51 powering prediction from Model 5513, flap installed (1% chord, 13°) behind fleet wedge, 8900 tons, still air drag included	A6
A5.	DDG 51 powering estimate from Model 5488, no wedge, no flap, 8900 tons	A7
A6.	DDG 51 powering estimate from Model 5488, no wedge, flap installed (1% ehord, 10°), 8900 tons	A8
A7.	DDG 51 powering estimate from Model 5513, no wedge, no flap, 8900 tons	A9
A8.	DDG 51 powering estimate from Model 5513, no wedge, flap installed (1% chord, 10°), 8900 tons	
A9.	DDG 51 powering estimate from Model 9141, no wedge, no flap, 8900 tons	A11
A10.	DDG 51 powering estimate from Model 9141, no wedge, flap installed (1% chord, 10°), 8900 tons	
A11.	DDG 51, change in delivered power due to stern flap, data based on three geosim model experiments	
A12.	DDG 51 stcrn flap trials data estimate, no wedge, 1% flap installed at 10°	A14

Table A1. USS RAMAGE (DDG 61) baseline trials results, fleet configuration with wedge, 8780 tons

Nije Special Shaff Special Assist Spe										
Ship Speed Shift Speed S	Avg (%)	86 88 86	98 98 97 97	97 97 97	97 97 97	97 97 97	8 8 8 8	97 97 97	97 97 97	100 100 100
Shiple Speed Shift Speed Shift Torque Form Shift Speed Torque Shift Speed Shift Speed Torque Shift Speed Torque Shift Speed S	Propeller Pitch Stbd (%)	86 86	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	98	98	94	86 86	86	86	101
Shift Speed		98	98 98 97	97 97 97	97 97 97	97	8 8 8	76	97	8 8 8
Shift Speed Avg Port Shift Speed Avg Port Shift Speed Avg Port Shift One Shift One <t< td=""><td>Total (hp/1000)</td><td>3.1 3.2 3.1 3.1</td><td>6.2 6.7 6.6 6.5 11.5</td><td>21.8 22.4 23.1 22.4</td><td>26.8 27.8 27.7 27.5</td><td>43.1 42.2 42.7</td><td>45.1 44.0 44.6</td><td>67.2 67.4 67.3</td><td>92.7 92.0 92.3</td><td>98.2 99.1 98.8</td></t<>	Total (hp/1000)	3.1 3.2 3.1 3.1	6.2 6.7 6.6 6.5 11.5	21.8 22.4 23.1 22.4	26.8 27.8 27.7 27.5	43.1 42.2 42.7	45.1 44.0 44.6	67.2 67.4 67.3	92.7 92.0 92.3	98.2 99.1 98.8
Shift Speed Shift Speed Shift Speed Shift Speed Charles Shift Speed Charles Shift Torque Total Avg (pm) <	Shaft Power Stbd (hp/1000)	1.5	2.9 3.1 3.2 5.3 5.3	10.3	13.0 14.0 14.0	20.7	21.1 20.3 20.5	33.7	43.1	48.4 48.9 48.7
Ship Speed Shaft Speed Shaft Speed Shaft Toque Shaft Toque Avg (pros) (prom)	Port (hp/1000)	1.6	3.3 3.4 6.2 6.2	11.6 12.1 12.7	13.8 13.7 13.6	22.3	24.0 23.7 24.1	33.5	49.5	49.8 50.2 50.1
Avg Shaft Speed Shaft Speed Avg Port Stbd Avg Port (knots) (rpm) (rpm) (lbf-fv1000) 14.15 55.5 56.0 55.8 150 10.45 54.8 55.0 55.0 160 11.20 55.6 55.0 150 160 12.30 69.6 69.8 69.7 155 13.50 69.7 70.2 70.9 255 13.50 69.7 70.2 70.9 255 13.50 69.7 70.2 70.0 255 13.50 69.7 70.2 70.0 255 11.40 70.2 70.0 255 255 11.45 84.6 84.1 390 255 22.30 104.0 105.5 104.7 640 23.40 114.5 116.3 116.4 635 23.50 114.5 118.9 116.4 635	Total (1bf-ft/1000)	290 305 295 300	470 500 495 490 720	720 1100 1120 1160	1220 1250 1245 1240	1745 1700 1725	1830 1785 1810 1805	2310 2310 2310	2820 2795 2810	3070 3080 3075 3075
Ship Speed Shaft Speed Avg Port Stbd Avg (knots) (rpm) (rpm) (rpm) 14.15 55.5 56.0 55.8 10.45 54.8 55.2 55.0 10.45 54.8 55.2 55.0 12.30 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.6 69.8 69.7 17.40 69.7 70.2 70.0 17.40 69.7 70.2 70.0 17.40 83.6 84.6 84.1 17.42 83.6 84.6 84.1 17.45 83.8 84.6 84.1 1	Shaft Torque Stbd (1bf-ft/1000)	140 145 140	220 235 240 330 330	515 510 520	585 620 620	835	855 820 830	1145	1325	1495 1505 1500
Avg Shaft Speed Avg Port Shaft Speed (knots) (rpm) (rpm) 14.15 55.5 56.0 10.45 54.8 55.2 14.10 55.6 56.0 17.40 69.6 69.8 17.45 69.6 69.8 17.45 83.8 84.6 17.45 83.8 84.6 17.45 83.8 84.6 17.55 103.7 104.6 22.25 103.7 104.6 17.95 83.8 84.6 17.95 104.0 105.5 21.95 104.0 105.5 22.30 104.0 105.5 23.40 114.5 118.9 25.55 129.2 131.8 26.55 129.2 131.8 26.55 129.2 131.8 26.55 129.2 131.8 26.55 129.2 130.9 26.55 129.2 <td>Port (lbf-fv1000)</td> <td>150</td> <td>250 265 255 390 390</td> <td>585 610 640</td> <td>635 630 625</td> <td>910 870</td> <td>975 965 980</td> <td>1165</td> <td>1495</td> <td>1575 1575 1575</td>	Port (lbf-fv1000)	150	250 265 255 390 390	585 610 640	635 630 625	910 870	975 965 980	1165	1495	1575 1575 1575
Avg (knots) 14.15 55.5 10.45 54.8 14.10 55.6 12.30 69.6 13.50 69.7 17.40 69.6 13.50 69.7 17.45 83.8 18.45 83.8 18.45 83.6 17.45 83.8 18.45 114.5 22.25 103.7 21.60 104.0 21.30 104.0 22.25 103.7 21.60 104.0 22.25 103.7 21.60 114.5 22.25 103.7 22.65 129.0 26.75 129.0 26.55 129.2 26.55 129.3 26.55 129.3 26.55 129.3 26.55 151.1 29.75 174.3 30.45 167.3	Avg (rpm)	55.8 55.0 55.8	69.7 70.0 70.5 70.0 84.2 84.1	84.2 104.1 105.1 104.7	115.4 116.7 116.7 116.4	129.7 130.5 130.1	129.6 129.4 129.5 129.5	152.8 153.2 153. 0	172.5 172.8 172.6	168.1 168.9 168.8 168.7
Avg (knots) Avg (14.15 10.45 14.10 12.30 17.40 13.50 17.70 13.50 17.70 15.55 17.45 18.45 17.95 22.25 22.25 22.25 22.30 17.70 22.25 22.30 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.30 25.50 25.50 25.50 26.95 26.95 27.30 30.55 30.55	Shaft Speed Stbd (rpm)	56.0 55.2 56.0	69.8 70.2 70.9 84.6 84.6	104.6 105.5 105.4	116.3 118.9 118.8	130.5	129.8 129.9 129.9	154.7	170.9	170.0 170.5 170.7
	Port (mpm)	55.5 54.8 55.6	69.6 69.7 70.2 83.8 83.6	103.7 104.6 104.0	114.5	129.0	129.3 128.9 129.2	151.0	174.1	166.2 167.3 167.0
	Ship Speed Avg (knots)	14.15 10.45 14.10 12.30	17.40 13.50 17.70 15.55 17.45	17.95 22.25 21.60 22.30 21.95	23.40 24.25 23.80 23.95	26.75 26.55 26.65	25.40 28.45 25.50 26.95	28.95 29.25 29.10	31.15 29.75 30.45	30.55 30.90 30.50 30.70
	_	1210E 1220W 1230E Average	1180E 1190W 1200E Average 1000E	Average 1030E 1040W 1050E Average	1120W 1130E 1140W Average	1060E 1070W Average	1062W 1072E 1082W Average	1087W 1088E Average	1090E 1100W Average	1092W 1103E 1112W Average

Table A2. USS RAMAGE (DDG 61) stern flap trials results, flap of 1% chord at 13° installed behind fleet wedge, 8680 tons

Run	Ship Speed		Shaft Speed			Shaft Torque			Shaft Power			Propeller Pitch
Number	Avg	Port	Stbd	Avg	Port	Stbd	Total	Port	Stbd	Total	Port	Stbd
	(knots)	(mdi)	(mdn)	(mdu)	(1bf-ft/1000)	(lbf-ft/1000)	(lbf-ft/1000)	(hp/1000)	(hp/1000)	(hp/1000)	(%)	(%)
X060Z	15.50	70.5	71.0	70.8	200	245	445	2.7	3.3	0.9	66	66
2100E	15.60	8.69	70.1	70.0	185	230	415	2.5	3.1	5.5	66	66
Average	15.55			70.4			430			% %		
2180E	20.85	94.9	95.1	95.0	365	430	795	9.9	7.8	14.4	66	66
2190W	20.65	95.1	95.2	95.2	375	435	810	8.9	7.9	14.7	66	66
Average	20.75			95.1			808			14.5		
2000E	24.95	116.6	115.8	116.2	580	615	1195	12.9	13.6	26.4	66	66
2010W	24.50	116.0	115.3	115.7	580	610	1190	12.8	13.4	26.2	66	66
Average	24.73			115.9			1195			26.3		
2210W	27.35	133.4	131.5	132.5	830	870	1700	21.1	21.8	42.9	66	66
2220E	27.65	132.7	131.3	132.0	810	855	1665	20.5	21.4	41.8	66	66
2230W	27.15	133.1	131.8	132.5	815	855	1670	20.7	21.5	42.1	66	66
Average	27.45			132.2			1675			42.2		
2030W	30.70	156.6	155.3	156.0	1210	1245	2455	36.1	36.8	72.9	66	66
2040E	29.00	155.4	152.8	154.1	1175	1205	2380	34.8	35.1	8.69	66	66
2050W	30.45	155.6	152.8	154.2	1190	1215	2405	35.3	35.3	9.07	66	66
Average				154.6			2405			70.8		
20615	29.45	170.0	168.8	169.4	1515	1515	3030	49.0	48.7	7.76	106	104
2070N	33.90	169.1	167.6	168.4	1570	1525	3095	50.5	48.7	99.2	106	104
Average	_			168.9			3065			98.5		

Table A3. DDG 51 powering prediction from Model 5513, fleet configuration with wedge, 8900 tons, still air drag included

DDG 5513 Exp12 @8900t Wedge w/SAD 10/1/96
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED
STILL AIR DRAG REF. AREA 4418.0 SQFT (410.43 SQ METERS)
WIND DRAG COEF. 0.70 POWER MARGIN FACTOR 1.00

I	SHIP	SPEED	RESID	JARY	EFFE	CTIVE	DE	LIVERED	P	ROPELLER	I
Ī	D	01-0-	RES.C			R- PE		WER- PD		REV. PER	Ī
Ī	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)			MINUTE	Ī
Ī	10.0	5.14	1.59		1020.0	760.6	1473.			44.5	Ī
I	11.0	5.66	1.67			1030.6	1996.			49.0	I
					1382.0						I
I	12.0	6.17	1.73		1819.0	1356.4	2629.			53.4	
I	13.0	6.69	1.78		2335.0	1741.2	3375.			57.9	I
I	14.0	7.20	1.82		2933.0	2187.1	4240.			62.5	I
I	15.0	7.72	1.84		3621.0	2700.2	5240.			67.1	I
I	16.0	8.23	1.87		416.0	3293.0	6391.			71.7	I
I	17.0	8.75	1.92		346.0	3986.5	7753.			76.4	I
I	18.0	9.26	1.98	1 6	5434.0	4797.8	9336.	1 696	1.9	81.1	I
I	19.0	9.77	2.05	1 7	7691.0	5735.2	11186.	7 834	1.9	86.0	I
I	20.0	10.29	2.15	6 9	9202.0	6861.9	13398.	4 999	1.2	90.9	I
I	21.0	10.80	2.31	6 11	1076.0	8259.4	16178.	5 1206	4.3	95.8	I
I	22.0	11.32	2.45	1 13	3144.0	9801.5	19236.	4 1434	4.6	100.8	I
I	23.0	11.83	2.51	1 15	5210.0	11342.1	22335.	2 1665	5.3	105.9	I
I	24.0	12.35	2.56	1 17	7460.0	13019.9	25699.	4 1916	4.1	110.8	I
I	25.0	12.86	2.63	1 20	0032.0	14937.9	29577.			116.1	I
I	26.0	13.38	2.77		3268.0	17350.9	34482.			121.6	I
I	27.0	13.89	3.08		7866.0	20779.7	41383.			127.6	I
Ī	28.0	14.40	3.56		228.0	25523.8	51061.			134.4	I
Ī	29.0	14.92	4.02		1382.0	30858.6	61944.			142.0	Ī
Ī	30.0	15.43	4.50		9690.0	37053.8	74689.			150.3	Ī
Ī	31.0	15.95	4.98		9106.0	44075.3	89227.			158.7	Ī
Ī	32.0	16.46	5.30		3135.0	50808.3				165.6	Ī
Ī	32.0	10.40	5.50	0 00	3133.0	30000.3	103200.	, ,,,,,	0.0	105.0	Ī
I	SHIP		EFFICI	PMCTEC	(ETA)		TUDE	ST DEDU	CTTON	ADVANCE	Ī
I			EFFICI	FIACTES	(EIA)			WAKE FA		COEF.	Ī
I	SPEED (KTS)	EITT & D	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			I
		ETAD								-	
I	10.0	0.690	0.760	0.980	0.930	0.710	0.985	1.005	0.980	1.345	I
I	11.0	0.690	0.760	0.980	0.930	0.710	0.975	1.000	0.975	1.335	I
Ī	12.0	0.690	0.760	0.980	0.930	0.710	0.970	0.995	0.965	1.330	I
I	13.0	0.690	0.760	0.975	0.930	0.710	0.965	0.990	0.965	1.325	I
I	14.0	0.690	0.760	0.970	0.935	0.710	0.965	0.990	0.965	1.325	I
I	15.0	0.690	0.760	0.965	0.940	0.715	0.960	0.990	0.970	1.320	I
I	16.0	0.690	0.760	0.965	0.945	0.720	0.955	0.990	0.970	1.320	I
I	17.0	0.690	0.760	0.960	0.945	0.720	0.955	0.995	0.975	1.320	I
I	18.0	0.690	0.760	0.955	0.950	0.720	0.950	0.995	0.970	1.315	I
I	19.0	0.690	0.760	0.955	0.950	0.720	0.950	0.995	0.975	1.310	I
I	20.0	0.685	0.760	0.955	0.950	0.720	0.945	0.995	0.970	1.300	I
I	21.0	0.685	0.755	0.955	0.945	0.715	0.945	0.990	0.965	1.290	I
I	22.0	0.685	0.755	0.960	0.945	0.715	0.945	0.985	0.960	1.280	I
I	23.0	0.680	0.755	0.955	0.945	0.715	0.945	0.990	0.960	1.280	I
I	24.0	0.680	0.755	0.955	0.945	0.710	0.945	0.990	0.965	1.275	I
I	25.0	0.675	0.755	0.950	0.945	0.715	0.945	0.995	0.970	1.275	I
I	26.0	0.675	0.755	0.950	0.940	0.710	0.945	0.995	0.970	1.270	I
I	27.0	0.675	0.750	0.955	0.940	0.705	0.945	0.990	0.960	1.250	I
I	28.0	0.670	0.745	0.965	0.935	0.695	0.950	0.980	0.945	1.220	I
I	29.0	0.670	0.740	0.965	0.935	0.690	0.950	0.985	0.945	1.195	I
I	30.0	0.665	0.735	0.960	0.945	0.690	0.955	0.995	0.955	1.180	I
I	31.0	0.660	0.730	0.955	0.950	0.690	0.960	1.000	0.970		I
I	32.0	0.660	0.725	0.960	0.950	0.685	0.960	1.000	0.965	1.150	I

Table A4. DDG 51 powering prediction from Model 5513, flap installed (1% chord, 13°) behind fleet wedge, 8900 tons, still air drag included

DDG 5513 Exp18 @8900t wedge & Flap w/SAD 10/1/96
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED
STILL AIR DRAG REF. AREA 4418.0 SQFT (410.43 SQ METERS)
WIND DRAG COEF. 0.70 POWER MARGIN FACTOR 1.00

-		00000	2222			~~~			_		_
Î	SHIP	SPEED	RESID			CTIVE		LIVERED		ROPELLER	I
I	/r/ma\	(24/0)	RES.C			R- PE		WER- PD		REV. PER	I
I	(KTS)	(M/S) 5.14	(CR*1		(HP)	(kW)	(HP)		W)	MINUTE	I
I	10.0				1042.0	777.0	1494.			44.7	
Ī	11.0	5.66 6.17	1.72		1403.0	1046.2	2014.			49.2	I
I	12.0				1837.0	1369.9	2634.			53.6	I
	13.0	6.69	1.80		2349.0	1751.6	3370.			58.1	I
I	14.0	7.20	1.82		2936.0	2189.4	4212.			62.6	I
	15.0	7.72	1.84		3621.0	2700.2	5196.		5.0	67.0	I
I	16.0	8.23	1.86		403.0	3283.3	6319.			71.6	I
Ī	17.0	8.75	1.88		5299.0	3951.5	7606.			76.1	I
I	18.0	9.26	1.92		5328.0	4718.8	9086.		6.0	80.6	I
Ī	19.0	9.77	1.96		7512.0	5601.7	10802.			85.2	Ī
I	20.0	10.29	2.05		3960.0	6681.5	12895.			89.9	I
I	21.0	10.80	2.20		753.0	8018.5	15474.			94.7	Ī
I	22.0	11.32	2.32		2722.0	9486.8	18353.			99.8	I
I	23.0	11.83	2.37		1691.0	10955.1	21218.			104.7	I
Ī	24.0	12.35	2.38		5711.0	12461.4	24169.			109.7	I
Ī	25.0	12.86	2.43		9095.0	14239.1	27666.			114.9	I
I	26.0	13.38	2.61		2383.0	16691.0	32541.			120.2	I
I	27.0	13.89	2.93		5967.0	20109.3	39274.			126.0	I
I	28.0	14.40	3.38		3021.0	24623.8	48236.			132.5	I
Ī	29.0	14.92	3.81		9839.0	29707.9	58339.			139.7	I
I	30.0	15.43	4.26		7737.0	35597.5	70034.			147.9	I
I	31.0	15.95	4.72		5722.0	42297.6	83607.			156.3	I
I	32.0	16.46	5.03	6 6	5452.0	48807.5	96752.	3 7214	8.2	163.0	I
I					(\						I
I	SHIP		EFFICI	ENCIES	(ETA)		_	IST DEDU		ADVANCE	I
I	SPEED	Ema D						WAKE FA		COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR		1-THDF	1-WFTT			I
I	10.0	0.695	0.760	0.980	0.935	0.715	0.985	1.005	0.980		I
I	11.0	0.695	0.760	0.975	0.940	0.715	0.975	1.000	0.980		I
I	12.0	0.695	0.760	0.975	0.940	0.715	0.970	0.995	0.975		I
I	13.0	0.695	0.760	0.975	0.940	0.715	0.965	0.995	0.970		I
I	14.0	0.695	0.760	0.970	0.945	0.720	0.965	0.995	0.970		I
I	15.0	0.695	0.760	0.970	0.945	0.720	0.960	0.990	0.970		I
I	16.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.970	1.320	I
I	17.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.970	1.320	I
I	18.0	0.695	0.760	0.960	0.955	0.725	0.950	0.990	0.970	1.315	I
I	19.0	0.695	0.760	0.960	0.955	0.725	0.950	0.985	0.970	1.310	I
I	20.0	0.695	0.760	0.960	0.955	0.725	0.945	0.985	0.965	1.305	I
I	21.0	0.695	0.760	0.965	0.950	0.720	0.945	0.980	0.960	1.295	I
I	22.0	0.695	0.755	0.965	0.950	0.720	0.945	0.980	0.955	1.285	I
I	23.0	0.690	0.755	0.960	0.950	0.720	0.945	0.980	0.960	1.285	I
I	24.0	0.690	0.755	0.955	0.955	0.725	0.945	0.985	0.965	1.285	I
I	25.0	0.690	0.755	0.950	0.960	0.725	0.945	0.995	0.975		I
I	26.0	0.690	0.755	0.955	0.955	0.720	0.945	0.990	0.970		I
I	27.0	0.685	0.750	0.965	0.945	0.710	0.945	0.980	0.955		I
Ī	28.0	0.685	0.745	0.975	0.940	0.700	0.950	0.970	0.940		Ī
Î	29.0	0.685	0.740	0.980	0.945	0.695	0.950	0.970	0.935		Ī
Ī	30.0	0.680	0.735	0.975	0.955	0.700	0.955	0.980	0.950		Ī
Ī	31.0	0.680	0.730	0.970	0.960	0.700	0.960	0.990	0.965		Ī
Ī	32.0	0.675	0.735	0.970	0.960	0.695	0.960	0.990	0.960		Ī
-	52.0	5.0,5	3.123	3.3.0	0.500	0.000	0.500	3.550	3.550	1.133	-

Table A5. DDG 51 powering estimate from Model 5488, no wedge, no flap, 8900 tons

5488 Baseline PE with 5513 Baseline interactions 11/29/01
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED

	I	SHIP	SPEED	RESIDU	IARY	EFFE	TIVE	DE	LIVERED	P	ROPELLER	I
T												
1	_	(KTS)	(M/S)									
1												
1												
I												
1												
I												
I 16.0 8.23 1.821 4347.0 3241.6 6289.8 4690.3 71.5 I I 17.0 8.75 1.889 5299.0 3951.5 7684.4 5730.2 76.3 I I 18.0 9.26 1.984 6438.0 4800.8 9342.1 6966.4 81.1 I I 19.0 9.77 2.117 7829.0 5838.1 11393.2 8495.9 86.3 I I 20.0 10.29 2.299 9549.0 7120.7 13922.5 10382.0 91.5 I I 21.0 10.80 2.516 11637.0 8677.7 17037.8 12705.1 96.7 I I 22.0 11.32 2.707 13970.0 10417.4 20514.9 15298.0 102.1 I I 23.0 11.83 2.844 16438.0 12257.8 24248.5 18082.1 107.5 I I 24.0 12.35 2.914 18936.0 14120.6 28008.2 20885.7 112.7 I I 25.0 12.86 2.989 21727.0 16201.8 32238.9 24040.5 118.1 I I 26.0 13.38 3.151 25264.0 18839.4 37645.2 28072.0 123.7 I I 27.0 13.89 3.469 30147.0 22480.6 45053.1 33596.1 12.9 8 I I 28.0 14.40 3.891 36390.0 27136.0 54615.6 40726.9 136.3 I I 29.0 14.92 4.381 44001.0 328115. 66318.8 49453.9 144.0 I I 30.0 15.43 4.941 53248.0 39707.0 80721.8 60194.2 152.9 I I 31.0 15.95 5.431 63119.0 47067.8 96118.3 71675.4 161.4 I I 30.0 6.60 0.760 0.980 0.930 0.710 0.975 1.000 0.975 1.350 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.965 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.965 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.975 0.990 0.970 1.325 I I 1.0 0.690 0.760 0.980 0.930 0.710 0.965 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.985 0.940 0.710 0.965 0.990 0.965 1.335 I I 1.0 0.690 0.760 0.985 0.945 0.720 0.955 0.990 0.970 1.325 I I 1.0 0.690 0.760 0.985 0.945 0.720 0.955 0.990 0.966 1.255 I I 1.0 0.680 0.760 0.985 0.945 0.720 0.955 0.990 0.966 1.255 I I 1.0 0.680 0.750 0.955 0.950 0.720 0.955 0.995 0.970 1.325 I I 1.0 0.680 0.760 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 22.0 0.680 0.755 0.950 0.945 0.710 0.945 0.990 0.965 1.255 I I 22.0 0.680 0.755 0.950 0.945 0.710 0.945 0.990 0.965 1.255 I I 22.0 0.66												
I												
I												
I												
I												
I												
I												
I										_		
I												
I												Ţ
I												
I												Ţ
I												
1 29.0												
1 30.0 15.43 4.941 53248.0 39707.0 80721.8 60194.2 152.9 I 31.0 15.95 5.431 63119.0 47067.8 96118.3 71675.4 161.4 I I 32.0 16.46 5.889 73923.0 55124.4 113339.3 84517.1 169.0 I I SHIP EFFICIENCIES (ETA) THRUST DEDUCTION ADVANCE I SPEED AND WAKE FACTORS COEF. I (KTS) ETAD ETAO ETAH ETAR ETAB 1-THDF 1-WFTT 1-WFTQ ADVC I 10.0 0.690 0.760 0.980 0.930 0.705 0.985 1.005 0.980 1.355 I 11.0 0.690 0.760 0.980 0.930 0.710 0.975 1.000 0.975 1.350 I 12.0 0.690 0.760 0.980 0.930 0.710 0.975 0.995 0.970 1.340 I I 13.0 0.690 0.760 0.980 0.930 0.710 0.975 0.995 0.970 1.340 I I 14.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.335 I 14.0 0.690 0.760 0.975 0.935 0.710 0.965 0.990 0.965 1.335 I 15.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I 17.0 0.690 0.760 0.965 0.945 0.720 0.955 0.995 0.975 1.320 I 18.0 0.690 0.760 0.955 0.950 0.720 0.955 0.995 0.975 1.320 I 18.0 0.685 0.760 0.955 0.950 0.720 0.955 0.995 0.975 1.305 I 19.0 0.685 0.760 0.955 0.950 0.720 0.955 0.995 0.975 1.305 I 19.0 0.685 0.760 0.955 0.955 0.945 0.710 0.945 0.995 0.970 1.295 I 1 1 1 1 1 1 1 1 1												
SAIP SPEED												
SHIP												
SHIP EFFICIENCIES (ETA) THRUST DEDUCTION ADVANCE I SPEED												
SPEED	I	32.0	16.46	5.889	73	3923.0	55124.4	113339.	3 8451	7.1	169.0	I
Table Tabl												
I 10.0 0.690 0.760 0.980 0.930 0.705 0.985 1.005 0.980 1.355 I I 11.0 0.690 0.760 0.980 0.930 0.710 0.975 1.000 0.975 1.350 I I 12.0 0.690 0.760 0.980 0.930 0.710 0.970 0.995 0.970 1.340 I I 13.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.335 I I 14.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.330 I I 15.0 0.690 0.760 0.965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 18.0 0.690 0.760 0.965 0.945 0.720 0.955 0.995 <		SHIP		EFFICIE	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	
I 11.0 0.690 0.760 0.980 0.930 0.710 0.975 1.000 0.975 1.350 I I 12.0 0.690 0.760 0.980 0.930 0.710 0.970 0.995 0.970 1.340 I I 13.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.335 I I 14.0 0.690 0.760 0.970 0.935 0.710 0.965 0.990 0.965 1.335 I I 15.0 0.690 0.760 0.9965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.945 0.720 0.955 0.990 0.970 1.325 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.955 0.995 0.975	I			EFFICIE	ENCIES	(ETA)			WAKE FA	CTORS	COEF.	I
I 12.0 0.690 0.760 0.980 0.930 0.710 0.970 0.995 0.970 1.340 I I 13.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.335 I I 14.0 0.690 0.760 0.970 0.935 0.710 0.965 0.990 0.965 1.330 I I 15.0 0.690 0.760 0.965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.965 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.955 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.955 0.995 <	I	SPEED	ETAD	ETAO	ETAH	ETAR		AND 1-THDF	WAKE FA 1-WFTT	CTORS 1-WFT	COEF.	I
I 13.0 0.690 0.760 0.975 0.930 0.710 0.965 0.990 0.965 1.335 I I 14.0 0.690 0.760 0.970 0.935 0.710 0.965 0.990 0.965 1.330 I I 15.0 0.690 0.760 0.965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.960 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.975 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.950 0.975 1.305 I I 20.0 0.685 0.755 0.955 0.950 0.720 0.945 0.995 0.970 <	I	SPEED (KTS)		ETAO	ETAH	ETAR		AND 1-THDF	WAKE FA 1-WFTT	CTORS 1-WFT	COEF.	I I I
I 14.0 0.690 0.760 0.970 0.935 0.710 0.965 0.990 0.965 1.330 I I 15.0 0.690 0.760 0.965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.960 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.955 0.995 0.975 1.320 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.955 0.975 1.315 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.975 1.295 I I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 <	I I I	SPEED (KTS) 10.0	0.690	ETAO 0.760	ETAH 0.980	ETAR 0.930	0.705	AND 1-THDF 0.985	WAKE FA 1-WFTT 1.005	CTORS 1-WFT 0.980	COEF. COEF. COEF. COEF.	I I I
I 15.0 0.690 0.760 0.965 0.940 0.715 0.960 0.990 0.970 1.325 I I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.960 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.955 0.975 1.305 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.975 1.295 I I 21.0 0.685 0.755 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 22.0 0.680 0.755 0.955 0.945 0.710 0.945 0.990 0.960 1.265 <	I I I	SPEED (KTS) 10.0 11.0	0.690	ETAO 0.760 0.760	ETAH 0.980 0.980	ETAR 0.930 0.930	0.705	AND 1-THDF 0.985 0.975	WAKE FA 1-WFTT 1.005 1.000	CTORS 1-WFT 0.980 0.975	COEF. Q ADVC 1.355 1.350	I I I I
I 16.0 0.690 0.760 0.965 0.945 0.720 0.955 0.990 0.970 1.325 I I 17.0 0.690 0.760 0.960 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.950 0.995 0.975 1.305 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.970 1.295 I I 21.0 0.685 0.760 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 22.0 0.680 0.755 0.955 0.945 0.710 0.945 0.990 0.965 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 <	I I I I	SPEED (KTS) 10.0 11.0 12.0	0.690 0.690 0.690	ETAO 0.760 0.760 0.760	ETAH 0.980 0.980 0.980	ETAR 0.930 0.930 0.930	0.705 0.710 0.710	AND 1-THDF 0.985 0.975 0.970	WAKE FA 1-WFTT 1.005 1.000 0.995	CTORS 1-WFT 0.980 0.975 0.970	COEF. Q ADVC 1.355 1.350 1.340	I I I I
I 17.0 0.690 0.760 0.960 0.945 0.720 0.955 0.995 0.975 1.320 I I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.950 0.995 0.975 1.305 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 20.0 0.685 0.755 0.955 0.945 0.710 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.955 0.945 0.710 0.945 0.995 0.960 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.265 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 <	I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0	0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975	ETAR 0.930 0.930 0.930 0.930	0.705 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.970 0.965	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990	CTORS 1-WFT 0.980 0.975 0.970	COEF. ADVC 1.355 1.350 1.340 1.335	I I I I
I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.950 0.995 0.975 1.305 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.990 0.965 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.265 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.955 0.945 0.710 0.945 0.995 <	I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0	0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970	ETAR 0.930 0.930 0.930 0.930 0.935	0.705 0.710 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990	CTORS 1-WFT 0.980 0.975 0.970 0.965	COEF. ADVC 1.355 1.350 1.340 1.335 1.330	I I I I I I
I 18.0 0.690 0.760 0.955 0.950 0.720 0.950 0.995 0.970 1.315 I I 19.0 0.685 0.760 0.955 0.950 0.720 0.950 0.995 0.975 1.305 I I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.990 0.965 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.265 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.955 0.945 0.710 0.945 0.995 <	I I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0	0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965	ETAR 0.930 0.930 0.930 0.930 0.935 0.940	0.705 0.710 0.710 0.710 0.710 0.715	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990	CTORS 1-WFT 0.980 0.975 0.965 0.965 0.965	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325	I I I I I I
I 20.0 0.685 0.760 0.955 0.950 0.720 0.945 0.995 0.970 1.295 I I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.990 0.960 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.260 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.990 0.960 1.255 I I 26.0 0.670 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.245 I I 27.0 0.670 0.745 0.955 0.940 0.705 0.945 0.995 <	I I I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0	0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970 0.965 0.965	ETAR 0.930 0.930 0.930 0.930 0.935 0.940 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.965 0.970	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325	I
I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.985 0.960 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.260 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.990 0.960 1.255 I I 26.0 0.670 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 27.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.995 0.965 1.245 I I 27.0 0.665 0.740 0.965 0.935 0.690 0.950 <	I I I I I I I I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970 0.965 0.965 0.960	ETAR 0.930 0.930 0.930 0.935 0.940 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.965 0.970 0.975	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325 1.325	I I I I I I I I I I I I I I I I
I 21.0 0.685 0.755 0.955 0.945 0.715 0.945 0.990 0.965 1.275 I I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.985 0.960 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.260 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.990 0.960 1.255 I I 26.0 0.670 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 27.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.995 0.965 1.245 I I 27.0 0.665 0.740 0.965 0.935 0.690 0.950 <		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.965	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.970 0.975 0.975	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325 1.325 1.325 1.320 1.315	
I 22.0 0.680 0.755 0.960 0.945 0.710 0.945 0.985 0.960 1.265 I I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.260 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 26.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.965 1.245 I I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.245 I I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 <		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970 0.965 0.965 0.965 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.945 0.950	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955 0.955 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.970 0.975 0.975 0.975	COEF. ADVC 1.355 1.350 1.340 1.335 1.335 1.325 1.325 1.325 1.325 1.320 1.315 1.305	
I 23.0 0.680 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.260 I I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 26.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.965 1.245 I I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.245 I I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 <		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.965 0.965 0.960 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.970 0.975 0.975 0.975 0.975	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325 1.325 1.325 1.325 1.325 1.325 1.325	
I 24.0 0.675 0.750 0.955 0.945 0.710 0.945 0.990 0.960 1.255 I I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 26.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.965 1.245 I I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.230 I I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.955 1.160 I I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 <		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.970 0.975 0.975 0.975 0.975 0.975	COEF. ADVC 1.355 1.355 1.350 1.340 1.335 1.330 1.325 1.325 1.325 1.320 1.315 1.305 1.305 1.295	
I 25.0 0.675 0.750 0.950 0.945 0.710 0.945 0.995 0.965 1.255 I I 26.0 0.670 0.750 0.950 0.940 0.705 0.945 0.995 0.965 1.245 I I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.230 I I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.965 1.145 I I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.950	0.705 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.720 0.715	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.950 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.965 0.975 0.975 0.975 0.975 0.975	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325	
I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.230 I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.995 1.160 I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.680	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.720 0.715 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955 0.950 0.950 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.975 0.975 0.975 0.975 0.975 0.965 0.966	COEF. ADVC 1.355 1.350 1.340 1.335 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325 1.325	
I 27.0 0.670 0.745 0.955 0.940 0.700 0.945 0.990 0.955 1.230 I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.995 1.160 I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.695 0.685 0.685 0.685 0.680 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755	ETAH 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955 0.955 0.950 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.975 0.975 0.975 0.975 0.975 0.976 0.965 0.966 0.960	COEF. ADVC 1.355 1.350 1.340 1.335 1.325 1.325 1.325 1.325 1.325 1.325 1.305 1.295 1.275 1.265 1.265	
I 28.0 0.665 0.740 0.965 0.935 0.690 0.950 0.980 0.940 1.200 I I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.955 1.160 I I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.695 0.685 0.685 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.750	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.950 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.970 0.965 0.970 0.975 0.970 0.975 0.976 0.976 0.966 0.966 0.966	COEF. ADVC 1.355 1.350 1.340 5.1.330 1.325	
I 29.0 0.665 0.735 0.965 0.935 0.685 0.950 0.985 0.945 1.180 I I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.955 1.160 I I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.695 0.685 0.685 0.685 0.680 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.750	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.970 0.970 0.970 0.970 0.970 0.970 0.965 0.966 0.966	COEF. ADVC 1.355 1.350 1.340 1.335 1.325	
I 30.0 0.660 0.725 0.960 0.945 0.685 0.955 0.995 0.955 1.160 I I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.680 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.750 0.750 0.750	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710 0.710 0.705 0.700	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.976 0.975 0.976 0.976 0.965 0.966 0.965 0.965 0.965	COEF. ADVC 1.355 1.355 1.355 1.340 1.325 1.325 1.325 1.325 1.325 1.326 1.325	
I 31.0 0.655 0.720 0.955 0.950 0.685 0.960 1.000 0.965 1.145 I		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.695 0.685 0.685 0.685 0.675 0.675 0.670 0.670	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.750 0.750 0.750	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710 0.710 0.705 0.700 0.690	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.985	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.975 0.975 0.975 0.975 0.975 0.965 0.965 0.965 0.965	COEF. ADVC 1.355 1.355 1.350 1.340 1.325	
		SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.675 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.750 0.750 0.750 0.750 0.740 0.745	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.720 0.720 0.720 0.720 0.720 0.710 0.710 0.710 0.710 0.710 0.705 0.699 0.685	AND 1-THDF 0.985 0.975 0.975 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.985 0.990 0.985	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.970 0.975 0.975 0.975 0.965 0.965 0.965 0.965 0.965 0.945	COEF. ADVC 1.355 1.350 1.340 1.335 1.330 1.325 1.326 1.326 1.327 1.328 1	
		SPEED (KTS) 10.0 11.0 11.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.675 0.675 0.675 0.670	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.750 0.750 0.750 0.745 0.745 0.735 0.725	ETAH 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	0.705 0.710 0.710 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710 0.715 0.710 0.710 0.705 0.700 0.685 0.685	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT 0.980 0.975 0.976 0.965 0.976 0.975 0.975 0.975 0.975 0.965 0.965 0.965 0.965 0.965 0.965	COEF. ADVC 1.355 1.350 1.340 1.335 1.325 1	

Table A6. DDG 51 powering estimate from Model 5488, no wedge, flap installed (1% chord, 10°), 8900 tons

5488 w/Flap PE with 5513 w/Flap interactions 11/29/01
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED

	CC	ORRELAT	ION ALL	OWANCE	.00015		TTC FRI	CTION U	SED		
I	CHID	SPEED	RESID	TIADV	CCCC/	CTIVE	חבי	LIVERED	1	ROPELLER	I
Ī	SHIF	SFEED	RES.C		POWER			WER- PD		REV. PER	Ī
I	(KTS)	(M/S)	(CR*1			(kw)	(HP)		W)	MINUTE	Ī
					(HP)						
I	10.0	5.14	1.50		993.0	740.5	1424.			44.3	I
I	11.0	5.66	1.55		.334.0	994.8	1915.			48.8	I
I	12.0	6.17	1.61		.753.0	1307.2	2513.			53.2	I
I	13.0	6.69	1.66		254.0	1680.8	3232.			57.7	I
I	14.0	7.20	1.70	4 2	837.0	2115.6	4068.	8 303	4.1	62.2	I
I	15.0	7.72	1.74	7 3	519.0	2624.1	5048.	0 376	4.3	66.7	I
I	16.0	8.23	1.77	4 4	289.0	3198.3	6152.	9 458	8.2	71.2	I
I	17.0	8.75	1.82		202.0	3879.1	7464.			75.8	I
Ī	18.0	9.26	1.89		273.0	4677.8	9006.			80.5	I
Ī	19.0	9.77	1.97		540.0	5622.6	10843.			85.2	Ī
Ī	20.0	10.29	2.13		149.0	6822.4	13177.			90.3	Ī
I											Ī
	21.0	10.80	2.31		.076.0	8259.4	15959.			95.3	<u>+</u>
I	22.0	11.32	2.48		245.0	9876.8	19146.			100.6	I
I	23.0	11.83	2.59		536.0	11585.2	22505.			105.9	I
I	24.0	12.35	2.65	1 17	837.0	13301.0	25885.	0 1930	2.4	111.1	I
I	25.0	12.86	2.71	5 20	427.0	15232.4	29698.	8 2214	6.4	116.4	I
I	26.0	13.38	2.87	2 23	781.0	17733.5	34698.	6 2587	4.7	121.7	I
I	27.0	13.89	3.18	5 28	457.0	21220.4	41612.	4 3103	0.4	127.5	I
I	28.0	14.40	3.60	6 34	496.0	25723.7	50599.	4 3773	2.0	133.8	I
I	29.0	14.92	4.08		785.0	31159.1	61507.			141.3	I
Ī	30.0	15.43	4.61		615.0	37743.6	74779.			150.0	Ī
Ī	31.0	15.95	5.08		032.0	44765.9	89132.			158.5	Ī
I	32.0	16.46	5.49		053.0	52238.5				165.8	Ī
1	32.0	10.40	5.49	9 /(053.0	54436.5	104523.	9 //94	3.5	100.0	1
_	CULD		DDDTAT	DNOTEC	(DER.)		mimi	om DEDII	OTTON	ADIIANOE	_
I	SHIP		EFFICI.	ENCIES	(EIA)			ST DEDU		ADVANCE	I
I	SPEED							WAKE FA		COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			I
I	10.0	0.695	0.760	0.980	0.935	0.715	0.985	1.005	0.98		I
I	11.0	0.695	0.760	0.975	0.940	0.715	0.975	1.000	0.980		I
I	12.0	0.695	0.760	0.975	0.940	0.715	0.970	0.995	0.97		I
I	13.0	0.695	0.760	0.975	0.940	0.715	0.965	0.995	0.975	1.335	I
I	14.0	0.695	0.760	0.970	0.945	0.720	0.965	0.995	0.97	1.330	I
I	15.0	0.695	0.760	0.970	0.945	0.720	0.960	0.990	0.970	1.330	I
I	16.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.975	1.325	I
I	17.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.970	1.320	I
Ī	18.0	0.695	0.760	0.960	0.955	0.725	0.950	0.990	0.97		I
I	19.0	0.695	0.760	0.960	0.955	0.725	0.950	0.985	0.97		Ī
Ī	20.0	0.695	0.760	0.960	0.955	0.725	0.945	0.985	0.96		Ī
Ī	21.0	0.695	0.755	0.965	0.950	0.720	0.945	0.980	0.95		Ī
Ī											Ī
	22.0	0.690	0.755	0.965	0.950	0.715	0.945	0.980	0.95		±
I	23.0	0.690	0.755	0.960	0.950	0.715	0.945	0.980	0.96		I
I	24.0	0.690	0.755	0.955	0.955	0.720	0.945	0.985	0.96		I
I	25.0	0.690	0.755	0.950	0.960	0.725	0.945	0.995	0.97		I
I	26.0	0.685	0.755	0.955	0.955	0.715	0.945	0.990	0.96		I
I	27.0	0.685	0.750	0.965	0.945	0.710	0.945	0.980	0.95		I
I	28.0	0.680	0.740	0.975	0.940	0.700	0.950	0.970	0.93		I
I	29.0	0.680	0.735	0.980	0.945	0.695	0.950	0.970	0.93		I
I	30.0	0.675	0.730	0.975	0.955	0.695	0.955	0.980	0.95	1.170	I
I	31.0	0.675	0.725	0.970	0.960	0.695	0.960	0.990	0.96	1.155	I
I	32.0	0.670	0.720	0.970	0.960	0.690	0.960	0.990	0.96	1.135	I

Table A7. DDG 51 powering estimate from Model 5513, no wedge, no flap, 8900 tons

5513 Baseline PE with 5513 Baseline interactions 11/29/01
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED

	C	ORRELAT	ION ALL	OWANCE	.00015		ITTC FRI	CTION U	SED		
I	CHID	SPEED	RESID	עממוז	PPPP/	CTIVE	חבי	LIVERED	Di	ROPELLER	I
Ī	SHIP	SPEED	RES.C			R- PE		WER- PD		REV. PER	Ī
	/ ICM CI \	(34 (0)									
I	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)			MINUTE	I
I	10.0	5.14	1.45		979.0	730.0	1414.			44.2	I
I	11.0	5.66	1.52		1321.0	985.1	1908.			48.6	I
I	12.0	6.17	1.58		L740.0	1297.5	2514.			53.0	I
I	13.0	6.69	1.65	5 2	2248.0	1676.3	3248.	7 242	2.6	57.5	I
I	14.0	7.20	1.70	6 2	2838.0	2116.3	4101.	3 305	8.3	62.1	I
I	15.0	7.72	1.76	1 3	3533.0	2634.6	5111.	0 381	1.3	66.8	I
I	16.0	8.23	1.80	0 4	321.0	3222.2	6251.	6 466	1.8	71.4	I
I	17.0	8.75	1.84	5 5	5233.0	3902.2	7587.	0 565	7.7	76.1	I
I	18.0	9.26	1.90		5299.0	4697.2	9136.			80.8	I
I	19.0	9.77	1.99		7565.0	5641.2	10998.			85.7	I
Ī	20.0	10.29	2.10		9080.0	6771.0	13215.			90.6	Ī
Ī	21.0	10.80	2.26		941.0	8158.7	15973.			95.6	Ī
Ī	22.0	11.32	2.41		3011.0	9702.3	19032.			100.6	Ī
Ī	23.0	11.83	2.52		5243.0	11366.7	22386.			105.9	Ī
Ī	24.0									111.0	Ī
		12.35	2.58		7550.0	13087.0	25838.				
I	25.0	12.86	2.66		0203.0	15065.4	29843.			116.3	I
I	26.0	13.38	2.83		3598.0	17597.0	35001.			121.9	I
I	27.0	13.89	3.14		3217.0	21041.4	41943.			128.0	I
I	28.0	14.40	3.54		1096.0	25425.4	50846.			134.3	I
I	29.0	14.92	4.00	-	L188.0	30713.9	61622.			141.8	I
I	30.0	15.43	4.51		9743.0	37093.3	74778.	5 5576	2.3	150.4	I
I	31.0	15.95	4.96	7 58	3930.0	43944.1	88928.	7 6631	4.1	158.6	I
I	32.0	16.46	5.36	0 68	3668.0	51205.7	104184.	3 7769	0.2	165.9	I
_					()				~~~		_
I	SHIP		EFFICI	ENCIES	(ETA)			ST DEDU		ADVANCE	I
I	SPEED							WAKE FA		COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			I
I	10.0	0.690	0.760	0.980	0.930	0.705	0.985	1.005	0.980	1.355	I
I	11.0	0.690	0.760	0.980	0.930	0.710	0.975	1.000	0.975	1.345	I
I	12.0	0.690	0.760	0.980	0.930	0.710	0.970	0.995	0.970	1.340	I
I	13.0	0.690	0.760	0.975	0.930	0.710	0.965	0.990	0.965	1.335	I
I	14.0	0.690	0.760	0.970	0.935	0.710	0.965	0.990	0.965	1.330	I
I	15.0	0.690	0.760	0.965	0.940	0.715	0.960	0.990	0.970	1.325	I
I	16.0	0.690	0.760	0.965	0.945	0.720	0.955	0.990	0.970	1.325	I
I	17.0	0.690	0.760	0.960	0.945	0.720	0.955	0.995	0.975	1.325	I
I	18.0	0.690	0.760	0.955	0.950	0.720	0.950	0.995	0.975	1.320	I
I	19.0	0.690	0.760	0.955	0.950	0.720	0.950	0.995	0.975	1.315	Ī
I	20.0	0.685	0.760	0.955	0.950	0.720	0.945	0.995	0.970	1.305	Ī
Ī	21.0	0.685	0.760	0.955	0.945	0.715	0.945	0.990	0.965	1.295	Ī
I	22.0	0.685	0.755	0.960	0.945	0.715	0.945	0.985	0.960	1.285	Ī
Ī	23.0	0.680	0.755	0.955	0.945	0.715	0.945	0.990	0.960	1.280	Ī
Ī	24.0	0.680	0.755	0.955	0.945	0.710	0.945	0.990	0.965	1.275	Ī
I			0.755	0.950	0.945	0.715	0.945	.0.995	0.970	1.275	I
I	25.0 26.0	0.675		0.950	0.945	0.715	0.945	0.995	0.970	1.265	I
		0.675	0.755								
I	27.0	0.675	0.750	0.955	0.940	0.705	0.945	0.990	0.960	1.245	I
I	28.0	0.670	0.745	0.965	0.935	0.695	0.950	0.980	0.945	1.220	I
I	29.0	0.670	0.740	0.965	0.935	0.690	0.950	0.985	0.945	1.200	I
I				0.960		0.690	0.955	0.995	0.955	1.180	I
_	30.0	0.665	0.735		0.945						_
I I	30.0 31.0 32.0	0.665	0.730	0.955	0.950	0.690	0.960	1.000	0.970	1.165	I

Table A8. DDG 51 powering estimate from Model 5513, no wedge, flap installed (1% chord, 10°), 8900 tons

5513 w/Flap PE with 5513 w/Flap interactions 11/29/01

SHIP LENGTH 467.0 FEET (142.3 METERS)

SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)

SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)

CORRELATION ALLOWANCE .00015 ITTC FRICTION USED

	C,	JICCELIAI	TON ADD	OWNER	.00013		IIIC PRI	CIION O.			
I	SHIP	SPEED	RESID	TIARY	EFFE	CTIVE	DE.	LIVERED	pr	OPELLER	I
Ī	DITT	OT DDD	RES.C			R- PE		WER- PD		REV. PER	Ī
	(remo)	(34 (0)									
I	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)	(k)	,	MINUTE	I
I	10.0	5.14	1.54		1006.0	750.2	1442.			44.4	I
I	11.0	5.66	1.59	6	1352.0	1008.2	1940.	7 144	7.2	48.9	I
I	12.0	6.17	1.65	6	1777.0	1325.1	2548.	3 190	0.3	53.3	I
I	13.0	6.69	1.70	6	2282.0	1701.7	3272.	9 244	0.6	57.8	I
I	14.0	7.20	1.74		2867.0	2137.9	4112.			62.3	I
Ī	15.0	7.72	1.78		3553.0	2649.5	5097.			66.8	Ī
Ī	16.0		1.81		4334.0						Ī
		8.23				3231.9	6218.			71.4	
I	17.0	8.75	1.83		5218.0	3891.1	7488.			75.9	I
I	18.0	9.26	1.86		6229.0	4645.0	8941.		-	80.4	I
I	19.0	9.77	1.92	5	7429.0	5539.8	10680.	0 796	4.1	85.0	I
I	20.0	10.29	2.01	0	8848.0	6598.0	12730.	0 949	2.7	89.7	I
I	21.0	10.80	2.13	9 1	0581.0	7890.3	15217.	3 1134	7.6	94.5	I
I	22.0	11.32	2.25	0 1	2495.0	9317.5	18011.	2 1343	1.0	99.4	I
I	23.0	11.83	2.31		4469.0	10789.5	20883.			104.4	Ī
Î	24.0	12.35	2.35		6576.0	12360.7	23965.			109.5	Ī
Ī	25.0	12.86	2.42		_		27622.				Ī
					9066.0	14217.5				114.9	
I	26.0	13.38	2.58		2231.0	16577.7				120.1	I
I	27.0	13.89	2.87		6628.0	19856.5	38746.			125.7	I
I	28.0	14.40	3.28		2338.0	24114.4	47150.			131.9	I
I	29.0	14.92	3.72	0 3	9118.0	29170.3	57175.	7 4263.	5.9	139.1	I
I	30.0	15.43	4.20	5 4	7227.0	35217.2	69201.	3 5160	3.4	147.5	I
I	31.0	15.95	4.63	3 5	5922.0	41701.0	82284.	8 6135	9.8	155.7	I
I	32.0	16.46	4.99		5048.0	48506.3	96077.			162.7	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED						AND	WAKE FA	CTORS	COEF.	I
Ī	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF		1-WFT(Ī
Ī	10.0	0.695	0.760	0.980		0.715	0.985	1.005	0.985	1.350	Ī
I	11.0	0.695	0.760	0.975	_	0.715	0.975	1.000	0.980	1.340	I
Ī	12.0	0.695	0.760	0.975		0.715	0.970	0.995	0.975	1.335	I
I	13.0	0.695	0.760	0.975		0.715	0.965	0.995	0.970	1.330	I
I	14.0	0.695	0.760	0.970		0.720	0.965	0.995	0.970	1.330	I
I	15.0	0.695	0.760	0.970	0.945	0.720	0.960	0.990	0.970	1.325	I
I	16.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.970	1.325	I
I	17.0	0.695	0.760	0.965	0.950	0.725	0.955	0.990	0.970	1.320	I
I	18.0	0.695	0.760	0.960	0.955	0.725	0.950	0.990	0.970	1.320	I
I	19.0	0.695	0.760	0.960		0.725	0.950	0.985	0.970	1.315	I
Ī	20.0	0.695	0.760	0.960		0.725	0.945	0.985	0.965	1.310	Ī
Ī	21.0	0.695	0.760	0.965		0.720	0.945	0.980	0.960	1.295	Ī
Ī	22.0	0.695	0.755	0.965		0.720	0.945	0.980	0.955	1.290	Ī
I	23.0	0.695	0.755	0.960		0.720	0.945	0.980	0.960	1.285	Ī
I	24.0	0.690	0.755	0.955		0.725	0.945	0.985	0.965	1.290	I
I	25.0	0.690	0.755	0.950		0.725	0.945	0.995	0.975	1.285	I
I	26.0	0.690	0.755	0.955		0.720	0.945	0.990	0.970	1.275	I
I	27.0	0.685	0.750	0.965	0.945	0.710	0.945	0.980	0.955	1.255	I
I	28.0	0.685	0.745	0.975	0.940	0.700	0.950	0.970	0.940	1.230	I
I	29.0	0.685	0.740	0.980		0.700	0.950	0.970	0.940	1.205	I
Ī	30.0	0.680	0.735	0.975		0.700	0.955	0.980	0.950	1.185	Ī
Ī	31.0	0.680	0.730	0.970		0.700	0.960	0.990	0.965	1.175	Ī
Ī	32.0	0.675	0.735	0.970		0.695	0.960	0.990	0.960	1.160	Ī
4	22.0	0.075	0.123	0.570	0.500	0.093	0.500	0.330	0.300	1.100	4

Table A9. DDG 51 powering estimate from Model 9141, no wedge, no flap, 8900 tons

9141 Baselin	e PE with 5513	Baseline intera	actions 11/29/01
SHIP	LENGTH	467.0 FEET	(142.3 METERS)
SHIP	DISPLACEMENT	8900. TONS	(9046. METRIC TONS)
SHIP	WETTED SURFACE	34809. SQFT	(3234. SQ METERS)
CORR	ELATION ALLOWAN	CE .00015	ITTC FRICTION USED

I	SHIP	SPEED	RESID		EFFE			LIVERED		ROPELLER	I
I	(((-)	RES.CO		POWER		POWER- PD			REV. PER	I
I	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)		W)	MINUTE	I
I	10.0	5.14	1.769		1074.0	800.9	1551.			44.9	I
I	11.0	5.66	1.800	0	1434.0	1069.3	2072.	6 154	5.5	49.3	I
I	12.0	6.17	1.830	0	1868.0	1393.0	2700.	8 201	4.0	53.7	I
I	13.0	6.69	1.85	5	2381.0	1775.5	3443.	3 256	7.7	58.1	I
I	14.0	7.20	1.890	0	2991.0	2230.4	4325.	7 322	5.6	62.7	I
I	15.0	7.72	1.920		3696.0	2756.1	5350.			67.3	I
Ī	16.0	8.23	1.94		4501.0	3356.4	6516.			71.9	Ī
Ī	17.0	8.75	1.980	_	5434.0	4052.1	7884.			76.6	Ī
Ī	18.0	9.26	2.01		6500.0	4847.0	9434.			81.2	Ī
I	19.0	9.77	2.01		7774.0	5797.1	11310.			86.2	Ī
I										91.1	I
	20.0	10.29	2.204		9319.0	6949.2	13574.				
I	21.0	10.80	2.380		1256.0	8393.6	16453.			96.1	I
I	22.0	11.32	2.580		3559.0	10110.9	19876.			101.5	I
I	23.0	11.83	2.751		6094.0	12001.3	23709.			107.1	I
I	24.0	12.35	2.875				27752.			112.5	I
I	25.0	12.86	2.989		21727.0 16201.8		32238.			118.1	I
I	26.0	13.38	3.151		5261.0	18837.1	37640.	4 2806	8.5	123.7	I
I	27.0	13.89	3.450		0037.0	22398.6	44874.	6 3346	2.9	129.7	I
I	28.0	14.40	3.862		6192.0	26988.4	54287.	8 4048	2.4	136.1	I
I	29.0	14.92	4.330		3626.0	32531.9	65688.	65688.0 4898		143.7	I
I	30.0	15.43	4.869		2660.0	39268.6	79716.9 59444.9		4.9	152.5	I
I	31.0	15.95	5.352		62408.0 46537		94888.2 70758.1		8.1	160.9	I
I	32.0	16.46	5.80		3084.0		111864.			168.5	Ī
_	02.0	20.10	0.00.		000-10	0113011		0 0311		200.5	-
I	SHIP		EFFICI	ENCIES	(ETA)			ST DEDU		ADVANCE	I
I	SHIP SPEED		EFFICI	ENCIES				ST DEDU WAKE FA		ADVANCE COEF.	I
		ETAD	EFFICII ETAO	ENCIES ETAH		ETAB		WAKE FA		COEF.	
I	SPEED	ETAD 0.690				ETAB 0.710	AND	WAKE FA	CTORS	COEF.	I
I	SPEED (KTS)		ETAO	ETAH	ETAR		AND 1-THDF	WAKE FA 1-WFTT	CTORS 1-WFT	COEF. Q ADVC	I
I I	SPEED (KTS) 10.0	0.690	ETAO 0.760	ETAH 0.980	ETAR 0.930	0.710	AND 1-THDF 0.985	WAKE FA 1-WFTT 1.005	CTORS 1-WFT(0.980	COEF. ADVC 1.335	I I I
I I I	SPEED (KTS) 10.0 11.0	0.690	ETAO 0.760 0.760	ETAH 0.980 0.980	ETAR 0.930 0.930	0.710 0.705	AND 1-THDF 0.985 0.975 0.970	WAKE FA 1-WFTT 1.005 1.000	CTORS 1-WFT(0.980 0.970	COEF. ADVC 1.335 1.330	I I I I
I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0	0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975	ETAR 0.930 0.930 0.930 0.930	0.710 0.705 0.705 0.710	AND 1-THDF 0.985 0.975 0.970 0.965	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965	COEF. 2 ADVC 1.335 1.330 1.325 1.320	I I I I I
I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0	0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970	ETAR 0.930 0.930 0.930 0.930 0.935	0.710 0.705 0.705 0.710 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965	COEF. 2 ADVC 1.335 1.330 1.325 1.320 1.320	I I I I I I
I I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0	0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.970	ETAR 0.930 0.930 0.930 0.930 0.935 0.940	0.710 0.705 0.705 0.710 0.710 0.715	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315	I I I I I I I
I I I I I I I	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0	0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965	ETAR 0.930 0.930 0.930 0.930 0.935 0.940 0.945	0.710 0.705 0.705 0.710 0.710 0.715	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315	I I I I I I I I
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965	ETAR 0.930 0.930 0.930 0.930 0.935 0.940 0.945	0.710 0.705 0.705 0.710 0.710 0.715 0.715	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315	I I I I I I I I I
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.965	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950	0.710 0.705 0.705 0.710 0.710 0.715 0.715 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.960 0.955 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.970	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315 1.315	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955	ETAR 0.930 0.930 0.930 0.935 0.940 0.945 0.945 0.950	0.710 0.705 0.705 0.710 0.710 0.715 0.715 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955 0.955 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.970	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315 1.315 1.315 1.315	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950 0.950	0.710 0.705 0.705 0.705 0.710 0.710 0.715 0.715 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.970 0.975 0.975	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315 1.315 1.315 1.310 1.305 1.300	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.695 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755	ETAH 0.980 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955 0.955 0.950 0.950	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.975	COEF. ADVC 1.335 1.330 1.325 1.320 1.320 1.315 1.315 1.315 1.315 1.315	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.720	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.950 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.970 0.975 0.965 0.965	COEF. ADVC 1.335 1.335 1.325 1.320 1.320 1.315 1.315 1.315 1.315 1.310 1.305 1.300 1.285 1.270	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.680	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.940 0.945 0.950 0.950 0.950 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.720 0.720 0.720 0.720 0.720 0.715 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955 0.955 0.950 0.955	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.970 0.975 0.965 0.960 0.960	COEF. ADVC 1.335 1.335 1.325 1.320 1.325 1.315 1.315 1.315 1.315 1.315 1.315 1.315 1.315 1.315 1.305 1.305 1.305 1.305	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.680 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.945 0.945 0.945	0.710 0.705 0.705 0.710 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955 0.955 0.950 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.975 0.960 0.960	COEF. ADVC 1.335 1.335 1.325 1.320 1.325 1.320 1.315 1.315 1.315 1.315 1.315 1.310 1.305 1.265 1.260	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945	0.710 0.705 0.705 0.710 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.975 0.966 0.960 0.960	COEF. ADVC 1.335 1.335 1.320 1.325 1.320 1.315 1.315 1.315 1.315 1.316 1.305 1.300 1.285 1.270 1.265 1.260 1.255	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.765 0.755 0.755 0.755 0.755	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945	0.710 0.705 0.705 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.975 0.975 0.965 0.965 0.965	COEF. ADVC 1.335 1.330 1.325 1.320 1.315 1.315 1.315 1.315 1.315 1.310 1.305 1.285 1.270 1.265 1.265 1.265 1.245	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.680 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.755 0.750 0.750	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.975 0.970 0.975 0.965 0.965 0.965 0.965	COEF. ADVC 1.335 1.330 1.325 1.320 1.315 1.315 1.315 1.315 1.315 1.310 1.285 1.270 1.265 1.260 1.255 1.245 1.230	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.685 0.685	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.765 0.755 0.755 0.755 0.755	ETAH 0.980 0.980 0.975 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945	0.710 0.705 0.705 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.965 0.970 0.970 0.975 0.975 0.965 0.965 0.965	COEF. ADVC 1.335 1.330 1.325 1.320 1.315 1.315 1.315 1.315 1.315 1.310 1.305 1.285 1.270 1.265 1.265 1.265 1.245	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.680 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.755 0.750 0.750	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.950 0.945 0.945 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.710 0.715 0.720 0.720 0.720 0.720 0.715 0.710 0.710 0.710 0.710	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.975 0.970 0.975 0.965 0.965 0.965 0.965	COEF. ADVC 1.335 1.330 1.325 1.320 1.315 1.315 1.315 1.315 1.315 1.310 1.285 1.270 1.265 1.260 1.255 1.245 1.230	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.675 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.755 0.755	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.710 0.710 0.710 0.710 0.705 0.705 0.700	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.950 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.990	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.965 0.965 0.965 0.965 0.965	COEF. ADVC 1.335 1.335 1.320 1.320 1.315 1.315 1.315 1.315 1.310 1.305 1.285 1.270 1.265 1.260 1.255 1.245 1.230 1.205	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.675 0.675 0.675	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.755 0.750 0.750 0.750	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.935 0.940 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.720 0.720 0.720 0.720 0.710 0.710 0.710 0.710 0.710 0.705 0.705 0.689	AND 1-THDF 0.985 0.975 0.965 0.965 0.965 0.955 0.955 0.955 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.990 0.985 0.990 0.985	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.965 0.960 0.965 0.965 0.965 0.965	COEF. ADVC 1.335 1.335 1.330 1.325 1.320 1.315 1.315 1.315 1.315 1.310 1.305 1.300 1.285 1.270 1.265 1.260 1.255 1.245 1.230 1.205 1.180	
	SPEED (KTS) 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 20.0 21.0 22.0 23.0 24.0 25.0 27.0 28.0 29.0 30.0	0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.685 0.685 0.685 0.675 0.675 0.675 0.670	ETAO 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.755 0.755 0.755 0.755 0.755 0.750 0.750 0.740 0.745 0.735	ETAH 0.980 0.980 0.980 0.970 0.965 0.965 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955	ETAR 0.930 0.930 0.930 0.935 0.945 0.945 0.950 0.950 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	0.710 0.705 0.705 0.705 0.710 0.715 0.715 0.720 0.720 0.720 0.720 0.710 0.710 0.710 0.710 0.705 0.705 0.685 0.685	AND 1-THDF 0.985 0.975 0.970 0.965 0.965 0.955 0.955 0.955 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945	WAKE FA 1-WFTT 1.005 1.000 0.995 0.990 0.990 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995	CTORS 1-WFT(0.980 0.970 0.965 0.965 0.970 0.970 0.970 0.975 0.960 0.965 0.965 0.965 0.965 0.955	COEF. ADVC 1.335 1.335 1.325 1.320 1.325 1.315 1.315 1.315 1.315 1.305 1.305 1.265 1.260 1.255 1.245 1.230 1.205 1.180 1.165	

Table A10. DDG 51 powering estimate from Model 9141, no wedge, flap installed (1% chord, 10°), 8900 tons

9141 w/Flap PE with 5513 w/Flap interactions 11/29/01
SHIP LENGTH 467.0 FEET (142.3 METERS)
SHIP DISPLACEMENT 8900. TONS (9046. METRIC TONS)
SHIP WETTED SURFACE 34809. SQFT (3234. SQ METERS)
CORRELATION ALLOWANCE .00015 ITTC FRICTION USED

	C	ORRELAT	ION ALL	OWANCE	.00015		ITTC FRI	CTION U	SED		
I	CUID	SPEED	RESID	773 D37	0000	300 7 3 200	DE	LIVERED	DI	ROPELLER	_
	SHIP	SPEED				CTIVE					I
I	(vma)	(24/0)	RES.C			R- PE		WER- PD		REV. PER	I
Ī	(KTS)	(M/S)	(CR*1	,	(HP)	(kW)	(HP)			MINUTE	Ī
I	10.0	5.14	1.96		1133.0	844.9	1625.			45.3	I
I	11.0	5.66	1.98		1509.0	1125.3	2168.			49.8	I
I	12.0	6.17	1.99		1952.0	1455.6	2802.	7 209	0.0	54.2	I
I	13.0	6.69	1.99	0	2471.0	1842.6	3548.	5 264	6.1	58.6	I
I	14.0	7.20	1.99	0	3074.0	2292.3	4414.	5 329	1.9	63.1	I
I	15.0	7.72	1.99	0	3768.0	2809.8	5412.	0 403	5.7	67.5	I
I	16.0	8.23	1.99	0	4557.0	3398.2	6545.	1 488	0.7	72.0	I
I	17.0	8.75	2.00		5471.0	4079.7	7859.			76.5	Ī
Ī	18.0	9.26	2.01		6500.0	4847.0	9340.			81.0	Ī
Ī	19.0	9.77	2.06		7710.0	5749.3	11095.			85.6	Î
Ī	20.0	10.29	2.14		9179.0	6844.8	13221.			90.4	Ī
Ī											I
	21.0	10.80	2.300		1031.0	8225.8	15891.			95.2	
I	22.0	11.32	2.460		3172.0	9822.4	19035.			100.4	I
I	23.0	11.83	2.613		15585.0 11621.7		22580.4 16838.			105.9	I
I	24.0	12.35	2.710		18083.0 13484.5		26263.			111.4	I
I	25.0	12.86	2.800		20833.0 15535.2		30324.	30324.6 22613.0		116.9	I
I	26.0	13.38	2.950		4194.0	18041.5	35341.	7 2635	4.3	122.1	I
I	27.0	13.89	3.243		8803.0	21478.4	42159.8 31438		8.5	127.8	I
I	28.0	14.40	3.645		4752.0	25914.6	51012.3 38039.		9.8	134.0	I
I	29.0	14.92	4.075		1742.0	31127.0	61437.0 45813		3.6	141.3	I
I	30.0	15.43	4.579		0284.0	37496.8	74229.4 55352.		2.9	149.7	I
Ī	31.0	15.95	5.035		9547.0	44404.2	88317.			158.1	Ī
Ī	32.0	16.46	5.45		9561.0		103685.			165.5	Ī
-	32.0	10.10	3.13	0 0	5501.0	310,1.0	103003.	, ,,,,,	0.1	103.3	-
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
Ī	SPEED				(2227)			WAKE FA		COEF.	Ī
Ī	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT			Ī
Ī	10.0	0.695	0.760	0.980		0.710	0.985	1.005	0.980	1.320	Ī
I	11.0			0.975			0.985				I
Ī		0.695	0.760			0.715		1.000	0.975	1.315	
	12.0	0.695	0.760	0.975		0.715	0.970	0.995	0.975	1.315	Ī
I	13.0	0.695	0.760	0.975		0.715	0.965	0.995	0.970	1.315	I
I	14.0	0.695	0.760	0.970		0.720	0.965	0.995	0.970	1.315	I
I	15.0	0.695	0.760	0.970		0.720	0.960	0.990	0.970	1.310	I
I	16.0	0.695	0.760	0.965		0.720	0.955	0.990	0.970	1.310	I
I	17.0	0.695	0.760	0.965		0.725	0.955	0.990	0.970	1.310	I
I	18.0	0.695	0.760	0.960		0.725	0.950	0.990	0.970	1.310	I
I	19.0	0.695	0.760	0.960	0.955	0.725	0.950	0.985	0.970	1.305	I
I	20.0	0.695	0.760	0.960	0.955	0.725	0.945	0.985	0.965	1.300	I
I	21.0	0.695	0.755	0.965	0.950	0.720	0.945	0.980	0.955	1.285	I
I	22.0	0.690	0.755	0.965	0.950	0.715	0.945	0.980	0.955	1.275	I
I	23.0	0.690	0.755	0.960		0.715	0.945	0.980	0.960	1.270	I
I	24.0	0.690	0.755	0.955		0.720	0.945	0.985	0.965	1.265	Ī
Ī	25.0	0.685	0.755	0.950		0.720	0.945	0.995	0.975	1.265	Ī
Ī	26.0	0.685	0.750	0.955		0.715	0.945	0.990	0.965	1.255	Ī
Ī	27.0	0.685	0.745	0.965		0.715	0.945	0.980	0.955	1.235	Ī
Ī	28.0						0.945				I
		0.680	0.740	0.975		0.695		0.970	0.935	1.210	
I	29.0	0.680	0.735	0.980		0.695	0.950	0.970	0.935	1.185	I
Ī	30.0	0.675	0.730	0.975	_	0.695	0.955	0.980	0.950	1.170	Ī
I	31.0	0.675	0.725	0.970		0.695	0.960	0.990	0.965	1.155	I
I	32.0	0.670	0.720	0.970	0.960	0.690	0.960	0.990	0.960	1.140	I

Table A11. DDG 51, change in delivered power due to stern flap, data based on three geosim model experiments

Baseline OD (hP) 1552
PD (hP) 1552 2073
1552
2072
5707
2701
3443
4326
5351
6517
7884
9434
11311
13575
16453
19877
23709
27753
32239
37640
44875
54288
65688
79717
94888
111865

Table A12. DDG 51 stern flap trials data estimate, no wedge, 1% flap installed at 10°

	Stern Flag	o 1% @ 13° Ins	talled Behind	Wedge		Stern Flap 1% @ 10°, No Wedge				
	US	S RAMAGE Tri	als	3rd Order		Model 5513	Full-Scale	Full-Scale		
	Baseline	Stern Flap	Stern Flap	Curve-Fit		Stern Flap	Estirnated [^]	Estimated		
Ship	Total	Total	Power	Magnitude*		Power	Stern Flap	Stern Flap		
Speed	Shaft Power	Shaft Power	Reduction	Scale Effects		Reduction	PD Reduction	Shaft Power		
(knots)	PD (hP)	PD (hP)	(%)	(\(\Delta \) %) PD		(%)PD	(%) PD	PD (hP)		
10	-	-	-	11.0		+2.0	-9.0	-		
11	-	-	-	11.0		+1.7	-9.3	-		
12	2650	2500	-5.6	11.0		+1.3	- 9.7	2394		
13	4065	3700	-9.0	11.0		+0.7	-10.3	3649		
14	5189	4600	-11.3	11.0		+0.3	-10.7	4632		
15	6250	5400	-13.6	10.8		-0.3	-11.0	5560		
16	7443	6300	-15.4	10.5		-0.5	-11.0	6626		
17	8893	7580	-14.8	10.1		-1.3	-11.4	7881		
18	10628	9090	-14.5	9.6		-2.1	-11.8	9377		
19	12594	10850	-13.8	9.2		-2.9	-12.1	11076		
20	14844	12850	-13.4	8.6		-3.7	-12.3	13016		
21	17302	15080	-12.8	8.1		-4.7	-12.8	15082		
22	20021	17590	-12.1	7.5		-5.4	-12.9	17439		
23	23101	20420	-11.6	7.0		-6.7	-13.7	19944		
24	26584	23650	-11.0	6.4		-7.2	-13.6	22964		
25	30937	27360	-11.6	5.8	ĺ	-7.4	-13.2	26844		
26	36365	31940	-12.2	5.2		-7.7	-12.9	31671		
27	43291	38400	-11.3	4.7		-7.6	-12.3	37972		
28	52311	47750	-8.7	4.1		-7.3	-11.4	46343		
29	64639	59860	-7.4	3.6		-7.2	-10.9	57618		
30	81365	73640	-9.5	3.2		-7.5	-10.7	72695		
30.9	100000	85950	-14.1	2.8		-7.5	-10.3	89746		
31	-	88150		2.8		-7.5	-10.3	92322		
31.8	-	100000		2.5		-7.7	-10.2	113175		
32	-	-		2.5		-7.8	-10.2	-		

*Determined RAMAGE vs. Model 5513

^Including Scale Effects

APPENDIX B

MODEL-SCALE TRANSOM FLOW OBSERVATIONS

FIGURES OF APPENDIX B

Page

B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap B3

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

26 kts. Flap (upper), Baseline (lower). Left-to-right Large, Mid, Small Models

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

28 kts. Flap (upper), Baseline (lower). Left-to-right Large, Mid, Small Models

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

30 kts. Flap (upper), Baseline (lower). Left-to-right Large, Mid, Small Models

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

32 kts. Flap (upper), Baseline (lower). Left-to-right Large, Mid, Small Models

Fig. B1. DDG 51 Models 5488 (large), 5513 (medium), and 9141 (small), comparisons of localized flow patterns around transoms, equivalent speeds, with and without stern flap - continued

INITIAL REPORT DISTRIBUTION

No. of	Copies		
Print	PDF	Office	Individual
-	1	DTIC	
		NSWCCD Code	Individual
1	-	3442 (Library)	
-	1	506	Walden
2	-	5800	5800 Office Files
2	3	5800	Cusanelli (1 print, 1 PDF), Karafiath (1 print, 1 PDF), Donnelly